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Abstract 

Evapotranspiration is a major component in both the water balance and the energy 

balance of the hydrological system. How to improve hydrological simulations and 

projections from a better estimation of evapotranspiration remains a crucial challenge. 

This study explores the impact of using actual evapotranspiration forcing in a 

hydrological model, compared with using potential evapotranspiration data. The 

estimation of actual evapotranspiration is based on an energy-balance model (the 

MEP model) and the hydrological simulations are based on a water-balance 

hydrological model. We investigate how coupling both models impact low and high 

flow simulations. Various statistical metrics are employed to quantify and analyze the 

results: the Nash-Sutcliffe efficiency, the Kling-Gupta efficiency, the percent bias, the 

rooted mean square error and the coefficient of determination. Findings from this 

study suggest that the use of actual evapotranspiration can provide better results in 

hydrological simulation. The coupled model shows a good performance in modeling 

soil moisture and actual evapotranspiration, while the hydrological simulations (low 

and high flows) are less impacted by the use of the coupled model. Further analyses 

are needed in order to reduce the inherent errors in the atmosphere-land coupling 

mechanism and improve hydrological simulations. 

Keywords: Evapotranspiration, water balance, energy balance, hydrological modeling 
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1. Introduction 

Evapotranspiration (ET), a process that involves physical evaporation and vegetal 

transpiration, is a major component in the water circulation and energy balance. At the 

continental scale, approximately 2/3 of annual precipitation is evaporated into the 

atmosphere, along with the consummation of half of the available net radiation 

(Seguin, 1997). Accurate ET estimation is therefore fundamental not only for water 

resources evaluation and management, but also as it plays an important role in 

drought monitoring and hydrological projection (Maidment, 1993).  

ET processes play an important role in both water-balance and energy-balance 

systems. Both provide the basic principles of ET estimation. Water-balance models 

(e.g., hydrological models) focus on mass conservation to quantitatively estimate ET 

while energy-balance methods focus on the analysis of the energy budget of the Earth. 

Most tools using methods of ET estimation are based on a single principle. Either they 

are based on water-balance method or on energy-balance method. Therefore, the 

integration of an energy-balance model to a hydrological model to have both the 

energy conservation and the mass conservation principles considered altogether is a 

key point for research and applications in water modeling.  

How to improve the hydrological performance of a model by using a more accurate 

ET estimation remains a crucial challenge in hydrology. As actual evapotranspiration 

(AET) is difficult to measure, an indirect way to estimate it is usually adopted from 

the potential evapotranspiration (PET), which determines the upper limit of AET, 

often employed as input data in hydrological modeling. However, this approach seems 

to be less capable nowadays to capture the impacts of climate changes on simulated 

river flows due to the sensitivity of hydrological projections to different PET inputs. 

Many studies reveal the importance of testing the applicability of various PET 

formulas in hydrological modelling under climate change (e.g., Guo et al., 2017; 

Seiller and Actil, 2016; Bai et al., 2016; Bartholomeus et al., 2015). It seems therefore 

complex to determine an ultimate or a universal PET formula that could suit all 

situations encountered in hydrological modeling, as large dissimilarities can be 

observed among catchments and different climatic conditions.  

A new perspective towards changing the use of PET in hydrological models was 

investigated by Peredo (2017), whose work addressed the question: what is the impact 

of the straightforward use of AET input on a lumped hydrological model? The 

feasibility of a direct AET input was investigated by chaining an energy balance 

model (MEP model) to a lumped hydrological model (GR4H model) on an 

experimental catchment monitored by IRSTEA. Results from this work showed that 

low flow simulations can be improved by using an AET model. The work was 

however based on a short (less than one year) time series of data and without a formal 

model coupling approach. Further analyses were therefore recommended.  

Our study is based on what was done in the work of Peredo (2017) and on the 

perspectives that emerged from it. The estimation of AET is also based on the MEP 

model, an energy-balance model, firstly suggested by Wang and Bras (2011) and 

improved by Hajji et al. (2017), which considers both evaporation and transpiration 
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processes. Further, this study aims at investigating how this energy-balance semi-

physical model can provide a useful estimation of AET to a water-balance conceptual 

hydrological model. In other words, we investigate how this MEP model efficiently 

interacts with the hydrological model and impacts hydrological simulations. To 

achieve this objective, the hydrological model should be capable of integrating the 

information provided by the energy-balance model. The interaction processes between 

the two model domains can be represented with the help of “model coupling”. 

Different parts of the conceptual hydrological models of the GR family of models 

developed at IRSTEA (see, for instance, Coron et al., 2017) are incorporated into the 

coupling framework. Thus, our study focuses on coupling the different models, as 

well as using several heuristic parameterizations to simplify the operation, and better 

represent the water flux in atmosphere-vegetation-soil interactions.  

This study is divided into two parts: firstly, we simulate the AET for the years 2016-

2017 and validate the MEP model to extend the study period of the work by Peredo 

(2017); secondly, we couple the MEP model with the water-balance hydrological 

model and evaluate its impact on the simulations of the coupled model. Section 2 

presents the basic theories of ET in hydrological modeling, uncertainties of PET as an 

input data in hydrological modeling and the importance of ET to hydrological 

simulations and climate change studies. Section 3 discusses the principles of model 

coupling, and presents detailed descriptions of the MEP model as well as of the 

hydrological models uses. We also describe how the MEP model is coupled with 

hydrological models in our study. Section 4 presents the study area and the data used 

in this study. The results and the conclusions of this study are presented in Section 5 

and Section 6, respectively. 

2. Literature Review 
2.1. Evapotranspiration in hydrological modeling 

Theoretically, AET is a major subtractive element to a regional system in the water-

balance framework. It is difficult to measure and currently only methods such as the 

Eddy Covariance and the Energy Balance Bowen Ratio, devices such as weighable 

lysimeters and scintillometers, or functions based on Surface Water Balance and 

Atmosphere Water Balance can provide continuous estimation of AET (Wang and 

Dickson, 2012). Given current constrains, such as high installation or maintenance 

cost, high data-requirement and various uncertainties, the estimation of AET in 

rainfall-runoff models is often performed from applying the soil moisture extraction 

function in PET formula as an indirect way to obtain AET. On the other hand, PET 

(e.g., Penman-Monteith formula; Monteith, 1965) estimates the atmospheric demand 

for water from a saturated surface, mainly considering the meteorological parameters 

such as temperature, wind speed, specific humidity and solar radiation. Therefore, the 

application of PET is pragmatic and operationally simple, thanks to the availability of 

these meteorological parameters to estimate its value (Oudin, 2004). 

Up to now there are two main ways to estimate AET at a catchment scale in 

hydrological models. The first one calculates, separately, water surface evaporation, 

soil evaporation and vegetation transpiration and then integrates them together to 

estimate the basin ET. This approach is usually applied in physically-based 
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hydrological models. The second approach to estimate AET is based on the PET 

formula and soil moisture functions. It is usually applied in conceptual models (Zhao 

et al., 2013). Improvements have been made on AET estimations in hydrological 

models by including remotely-sensed data to distributed (e.g., Chen et al., 2005) and 

lumped rainfall-runoff models (e.g., Zhang et al., 2009). This improvement with 

remote sensing data is however limited by the time scale requirements of the models 

and the lack of instantaneousness remote-sensed data and the low accuracy problem 

of available data.   

2.2. From potential evapotranspiration to actual evapotranspiration 

As an important forcing data in hydrological simulation, PET has drawn a lot of 

attention (e.g., Singh and Xu, 1997; Andréassian et al., 2004). Nonetheless, 

concerning the use of PET in hydrological simulation, three main obstacles exist: 

- Firstly, insensitivity of rainfall-runoff models to PET input has been verified and 

intensively investigated (e.g., Fowler, 2002). The reasons why most rainfall-runoff 

models do not provide a better simulation with a more detailed PET input may be 

related to: (1) a natural phenomenon convey, (2) an inherent defect of models or/and 

(3) an inappropriate PET estimation (Oudin et al., 2005a). The first explanation is 

more commonly accepted, which reveals that soil moisture is a core factor in ET 

processes. Parmele (1972) and Paturel et al. (1995) attributed this insensitivity 

dilemma to the soil moisture pattern in models that work as a low-pass filter. Oudin et 

al. (2004; 2005b) challenged the efficiency and validity of the Penman-Monteith 

formula, even though it is a physically-based formula. In addition, soil moisture 

pattern still shows a considerable efficiency during the conversion from PET to AET 

in rainfall-runoff models (Oudin et al., 2005). Given this insensitivity, simpler and 

less physically based PET methods are prone to be applied in discharge simulation 

(Kannan et al., 2007; Kay and Davies, 2008). Although the simplification of the 

estimation of PET is attractive, no solid evidence confirms the accuracy and validity 

of this input. The comparison of model performance to an AET input has not yet been 

conducted and whether this input is capable of projecting future climate impact is still 

an open question (Seiller and Anctil, 2016).  

- Secondly, the use of PET as an input to hydrological models adds uncertainties to 

some extent and this remains a crucial problem when dealing with future climate 

projections (Kingston et al., 2009). The double source of uncertainties, due to the 

choice of PET formula and the transformation to AET from the soil water content, 

makes it difficult to accurately represent the land-atmosphere interaction. The poor 

simulation of prolonged low flow and recession periods in rainfall-runoff models may 

probably be ascribed to this, as the ET process dominates in drought periods. 

Numerous PET formulas exist based on different driven mechanisms. Zhao et al. 

(2013) summarized the formulas used in hydrological models and showed that the 

selection of a competent PET formula, as well as a soil moisture function, to reduce 

uncertainties remains a pivotal question.  

- Thirdly, the term PET itself is quite ambiguous, without a full consideration of the 

vegetal transpiration (Brutsaert, 1982). The concept of PET was firstly introduced by 
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Thornwaite (1948) for the classification of climate and it is now widely used as a 

maximum rate of AET. A considerable difference between evaporation and ET has 

been found over tall vegetation (e.g., Stewart and Thom, 1973), as well as for the ET 

in forested and grassed areas (Zhang et al., 2001). The simplification brought by 

ignoring the effect of transpiration seems unacceptable, especially in vegetation-

covered catchments. Recent work (Jasechko et al., 2013) has showed that 

transpiration itself accounts for up to 90% of terrestrial ET and water losses through 

transpiration into the atmosphere should be fully taken into consideration in 

hydrological simulation. Even though several PET formulas with consideration of 

transpiration were proposed, such as Turc (1961) and Hamon (1961), they are just 

suitable for specific underlying surface and climate conditions.  

The three main obstacles mentioned above hamper the improvement of modeling in 

energy- and water-balance frameworks. Whether PET as forcing data is appropriate 

and robust enough to simulate the hydrological processes within a catchment or to 

project the impact of climate change still requires deep investigations.   

2.3. Evapotranspiration under global warming 

Nowadays, the trend of global warming is inevitable and its impact on the ET process 

of the terrestrial hydrological cycle is remarkable (IPCC, 2014). The potential 

alterations in regional ET have been studied in abundance (e.g., Sharma and Walter, 

2014). It is broadly acknowledged that current warming climate is accelerating the 

hydrological cycle and the AET tends to increase during the past several decades in 

most places, associated with the observed increase in precipitation (e.g., Golubov et 

al., 2001; Koster et al., 2004; Qian et al., 2007; Van Heerwaarden et al., 2010).  

However, some opposite trends in PET and AET are reported (Liu et al., 2004; 

Roderick and Farquhar, 2002; Xu et al., 2005; Van Heerwaarden et al., 2010). A 

decreasing trend in pan evaporation has been reported worldwide (known as the 

evaporation pan paradox), which indicates the reduced evaporative demand or PET 

(Liu et al., 2004). Contradictory to the global warming, a decreasing solar radiation 

(global dimming) may be linked to the pan evaporation anomalies (e.g., Roderick and 

Farquhar, 2002; Xu et al., 2005; Van Heerwaarden et al., 2010). Hobbins et al. (2004) 

suggested that this inconsistency is just a complementary demonstration of increased 

AET, which defend the standpoint of Brutsaert and Parlange (1998): decreasing pan 

evaporation actually indicates increasing terrestrial evaporation. 

In short, estimating AET from the evaporative demand is inadequate nowadays as the 

ET process is dominated not only by the energy budget but also by water supply 

limitations (Roderick et al., 2009a; 2009b).  

2.4. Summary of the literature  

In summary, the literature identifies the uncertainties of using PET in hydrological 

simulations and future projections as well as the importance of accurate ET estimation 

in the current climate and a changing climate context. The use of PET in hydrological 

modeling as an indirect way to solve the problem of the difficult availability of 

continuous AET data has showed a great success. However, the use of PET in 
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hydrological modeling seems less and less capable of meeting the needs of projection 

accuracy and providing the full information of hydrological components. Therefore, 

moving from PET to AET as forcing data to hydrological models to simulate the 

present and to project the future tends to be more reasonable due to the fact that AET 

greatly reduces the input uncertainty in the modeling framework. 

3. Methodology  
3.1. General introduction 

In hydro-meteorological research and forecasting activities, which consider local 

atmosphere-land interactions, advanced models are needed. Conjunctive modeling is a 

major methodology in “modeling and simulation” used to integrate systems or 

processes. Conjunctive modeling means to “link site-specific models in such a way 

that the interaction processes, between the domains the models represent are modeled 

on a time-step basis” (Becker and Burzel, 2016). 

There are two main types of conjunctive modeling: one is model coupling, which 

means that models are fully coupled with bi-directional data transmission; the other 

one is one-way chain, an uncoupled approach that has data exchange in one direction 

only (Becker and Burzel, 2016). For instance, if we consider two models that need to 

be conjunctively linked, if models are coupled, the simulation results of the first 

model have an impact on the second model and vice versa. This means that coupled 

models must exchange information during runtime on a time step basis. If models are 

uncoupled, the simulation results of the first model have an impact on the second one, 

but the simulation results of the second model have no feedback impact on the first 

model (Becker and Burzel, 2016).  

The coupling of models is a commonly used approach when addressing the complex 

interactions between different components of earth systems (e.g., Zabel and Mauser, 

2012). The work by Givati et al. (2016) has suggested that the use of model coupling 

in atmospheric-hydrological simulations has the potential to improve forecasts for 

early flood warning, compared with the use of uncoupled models. It should be noted 

that coupled models are considerably harder to develop than the one-way chain as 

there is much more possibility for the coupled model to alienate away from the reality.  

As mentioned in section 2, since soil moisture content has profound effects on ET 

process, and since ET process creates significant subtraction (addition during the 

condensation) to the soil moisture, we propose to investigate how the soil moisture 

part of a hydrological model and the AET model should be coupled together to better 

simulate the atmosphere-land interactions and to gain an improved understanding of 

the model’s response dynamics. The MEP model, used to estimate AET, is divided 

into soil evaporation and vegetal transpiration, which subtract water content from 

surface soil and root-zone soil, respectively. As such, a two-layer system in the 

hydrological production reservoir, which can represent the evolution of soil moisture 

in these two layers, should be applied. For this, GRHUM model (Loumagne et al., 

1996) is chosen in our study. To better represent the atmosphere-vegetation-soil 

continuum, the coupled model obtained with the MEP and the GRHUM models will 

be embedded in the GR4H model structure (Perrin et al., 2003). To make use of recent 
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research, we will also investigate the use of an interception reservoir introduced by 

Ficchi (2017). These models are described in the next sections and then the model 

coupling technique is explained.  

3.2. The MEP (Maximum Entropy Production) model  

Whereas the first law of thermodynamics expresses the conservation of energy, the 

second law specifically states that all isolated systems irreversibly act to dissipate. 

The dissipated potential is referred to as entropy. As any thermodynamic non-

equilibrium system shall unceasingly develop to a steady state (thermodynamic 

equilibrium) over sufficiently long time, the notion of entropy is then the distance to 

the thermodynamic equilibrium. Entropy production can thus be interpreted as the 

degree of irreversibility. The proposed principle of the Maximum Entropy Production 

(MEP) model states that given the present constraints, a non-equilibrium system 

develops so as to produce entropy at the maximum possible rate. The second law of 

thermodynamics explicitly states the increasing trend of entropy while the MEP 

principle, as a complement to the second law of thermodynamics, answers which 

path, out of available paths, it will take (Swenson, 2000).  

 

Figure 1: The diagram of the MEP model showing that the AET process restricted by energy balance 
function is estimated from soil evaporation and vegetal transpiration with an introduction of a 
vegetation index (modified from Peredo, 2017).  

A state far from equilibrium is maintained in extremely complicated interactions in 

Earth systems (AET process, for example), where there remains a lack of full 

understanding of physical mechanisms behind these processes (Kleidon, 2009). 

Instead of figuring out the governing physical laws to describe events in sufficiently 

rigorous terms, a prediction of the evolution or a quantitative inference with the 

current limited information can be more promising.   
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Based on this, figure 1 shows how the MEP model is constructed as explained by 

Wang and Bras (2011), including evaporation from soil and transpiration from 

vegetation. A detailed model formulation is presented in Appendix.  

3.3.GR hydrological models 

Irstea
1
, has developed a set of lumped hydrological models, the “Génie Rural” (GR) 

family of models
2
. The GR models have shown a good performance in French basins 

and their simple structure allows the compatibility with other models. An interception 

reservoir introduced by Ficchi (2017), a two-layer production reservoir of the 

GRHUM model (Loumagne et al., 1996) and the GR4H model (Perrin et al., 2003) 

are presented below. As explained in the introduction section, since the MEP model 

should interact efficiently with the existing hydrological models, we decided to 

choose these models to carry out the tests of our work.  

3.3.1.  Interception reservoir  

Interception refers to precipitation that does not reach the soil, but is instead 

intercepted by the vegetation canopy. The interception reservoir introduced by Ficchi 

(2017) has a capacity of a few millimeters (𝐼𝑚𝑎𝑥) that needs to be calibrated. The 

reservoir produces net precipitation (𝑃𝑛, in mm) when this capacity is exceeded. In 

our study, the interception loss (𝐸𝑖 , in mm), i.e. evaporation from the reservoir, is 

determined by the AET from the MEP model. The diagram of the interception 

reservoir is shown in figure 2. 

 

Figure 2: The diagram of the interception reservoir introduced by Ficchi (2017). 

The implementation of the interception reservoir in our study depends on the priority 

given to interception loss. Thus, equations over a time step are:  

The interception loss [mm] over a time step:  

𝐸𝑖 = 𝑚𝑖𝑛 (𝐴𝐸𝑇, 𝑃 +
𝐼0
∆𝑡
) 

(1) 

The net precipitation rate [mm] over a time step:  

𝑃𝑛 = 𝑚𝑎𝑥 (0, 𝑃 −
(𝐼𝑚𝑎𝑥 − 𝐼0)

∆𝑡
− 𝐸𝑖) 

(2) 

The reservoir water content [mm] over a time step:  

𝐼 =  𝐼0 + (𝑃 − 𝑃𝑛 − 𝐸𝑖)∆𝑡 (3) 

3.3.2. GRHUM model production reservoir 

The soil production reservoir is represented by a two-layer system for simulating 

                             
1
 National applied research institute in France. 

2
 https://hepex.irstea.fr/the-family-of-the-gr-hydrological-models/ 

https://hepex.irstea.fr/the-family-of-the-gr-hydrological-models/
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surface soil moisture 𝑊𝑠  and global soil (bulk soil) moisture 𝑊𝑔 . The production 

reservoir has a capacity of 𝑊𝑠𝑚𝑎𝑥 for surface soil moisture and a capacity of 𝑊𝑔𝑚𝑎𝑥 

for global soil moisture, which needs to be calibrated. The bulk layer represents the 

root zone where vegetal transpiration takes place and includes the topsoil. The depth 

of surface soil, 𝑑𝑠 , and that of bulk soil, 𝑑𝑔 , are fixed to 10 centimeters and 100 

centimeters according to the local soil property (Loumagne et al., 1996).  

The entering source to the production reservoir is the net precipitation from the 

interception reservoir and thus the two reservoirs can be connected. Net precipitation 

is divided in two parts: the first one, 𝑃𝑠, wets the production reservoir via the transfer 

function; the other,  𝑃𝑛 − 𝑃𝑠 , goes directly to the outlet. The distribution of 

throughfall
3
 is driven by the moisture state of the global layer. 𝐸𝑠, ET from the surface 

layer, and 𝐸𝑔, ET from the global layer, are calculated from the MEP model, based on 

the corresponding soil moisture. Percolation leakage from the topsoil, 𝑃𝑅𝑠, and the 

one from the bulk soil, 𝑃𝑅𝑔, are determined by the Thomas model (Thomas, 1981). 

Figure 3 shows the diagram of the production reservoir in the GRHUM model, as 

decribed in the works of Loumagne et al. (1996).  

 

Figure 3: The diagram of the production reservoir in the GRHUM model (source: Loumagne et al., 

1996). 

1) Soil moisture evolution 

Throughfall feeds the production reservoir: 

𝑃𝑠 = 𝑃𝑛 − (
𝑊𝑔

𝑊𝑔𝑚𝑎𝑥
)

2

𝑃𝑛 
 

(4) 

and therefore variations of surface and bulk layer humidity are obtained:  

{
 
 

 
 ∆𝑊𝑠
∆𝑡

=
𝑃𝑠 − 𝐸𝑠 − 𝑃𝑅𝑠

𝑑𝑠
∆𝑊𝑔

∆𝑡
=
𝑃𝑠 − 𝐸𝑔 − 𝑃𝑅𝑔

𝑑𝑔

 

 

 

(5) 

                             
3
 In hydrology, throughfall is the process which describes how wet leaves shed excess water onto the 

ground surface 
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The percolation produced by the topsoil infiltrates towards the bulk soil and the 

percolation produced by the bulk soil adds to the direct flow that goes to the outlet. 

𝑃𝑅𝑠 and 𝑃𝑅𝑔 are defined in the Thomas model (Thomas, 1981), which is presented in 

the following.  

2) Drainage function: Thomas model 

In the case when throughfall is greater than global ET, humidity values from the soil 

layers are considered to temporarily increase to the value:  

{
 
 

 
 𝑋𝑠 = 𝑊𝑠 +

𝑃𝑠 − 𝐸𝑠
𝑑𝑠

𝑋𝑔 = 𝑊𝑔 +
𝑃𝑠 − 𝐸𝑔

𝑑𝑔

 

 

 

(6) 

Then the soil moisture decreases under the effect of gravity. The final value of the soil 

moisture in both soil layers is formulated as follow: 

{
 
 

 
 
𝑌𝑠 =

𝑋𝑠 +𝑊𝑠𝑚𝑎𝑥
2𝑇ℎ

− √(
𝑋𝑠 +𝑊𝑠𝑚𝑎𝑥

2𝑇ℎ
)
2

−
𝑋𝑠𝑊𝑠
𝑇ℎ

𝑌𝑔 =
𝑋𝑔 +𝑊𝑔𝑚𝑎𝑥

2𝑇ℎ
− √(

𝑋𝑔 +𝑊𝑔𝑚𝑎𝑥

2𝑇ℎ
)
2

−
𝑋𝑔𝑊𝑔

𝑇ℎ

 

 

 

 

(7) 

 

Figure 4: The curves of various values of the parameter Th in the Thomas model (Thomas, 1981) for 
the case when soil moisture is 40% (source: Cognard-Plancq, 1996 in page 97). 

The parameter 𝑇ℎ needs to be calibrated and its curvature is characterized in figure 4. 

The percolation leakage for each layer is obtained as follows: 

{
𝑃𝑅𝑠 = (𝑊𝑠 − 𝑌𝑠)𝑑𝑠
𝑃𝑅𝑔 = (𝑊𝑔 − 𝑌𝑔)𝑑𝑔

 
 

(8) 

3) Calculation of ET 

The calculation of ET is based on the MEP model. The ET of the bulk layer represents 

the total ET while the ET from the topsoil decomposes into evaporation from the bare 

ground and 20% of the vegetal transpiration from the work by Loumagne et al. 

(1996). 𝐸𝑔 equals to 𝐸𝑇 obtained in equation (19) in Appendix. From equations (11), 

(14) and (19) in Appendix, the surface soil ET is defined as: 

𝐸𝑠 = (1 − 𝑓𝑣𝑒𝑔)𝐸𝑣 + 0.2𝑓𝑣𝑒𝑔𝑇𝑟
𝑊𝑠

𝑊𝑠𝑚𝑎𝑥
 

 

(9) 
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3.3.3. GR4H model 

The GR4H model (Perrin et al., 2003) is an hourly lumped rainfall-runoff model with 

four parameters, as shown in figure 5a. The parameters are: 𝑥1, maximum capacity of 

the production store (mm); 𝑥2, groundwater exchange coefficient (mm); 𝑥3, maximum 

capacity of the routing store; 𝑥4, base time of the unit hydrograph (hours).  

In our study, the interception reservoir and the production reservoir mentioned in 

sections 3.3.1 and 3.3.2 will replace the corresponding parts (interception and 

production store) in GR4H model, as shown in figure 5b. The routing flow 𝑃𝑅 is thus 

the connection to the GR4H model. To adjust the time lag between rainfall and flow 

peak, 90% of 𝑃𝑅 is routed by the unit hydrograph UH1 and then through a non-linear 

routing store. The remaining flow is routed by the unit hydrograph UH2. A ground 

water exchange term 𝐹 acts on both flow components. The outflow 𝑄 is the sum of 

the two routing. The interception process and the production store evolution functions 

in the original GR4H model are presented in Appendix.  

 

 

 

 

 

 

 

 

 

  
Figure 5a: The diagram of GR4H 

model (source: Perrin et al., 2003 in 

page 3). 

Figure 5b: The diagram of the modified Interception-

GRHUM-GR4H model used in this study.  
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3.4. Model coupling                                                                                        

The MEP model and the “Interception-GRHUM” model (hereafter, I-GRHUM) are 

the models to be coupled, which will create the important interactions between AET 

and soil moisture. The approach of coupling to exchange information between models 

can be different: external coupling, iterative coupling and simultaneous coupling 

(Morita and Yen, 2000). External coupling means exchange data once per time step in 

both directions. In other words, results from one model are used as boundary 

conditions in the other model (see figure 6a). Iterative coupling means to exchange 

data not only once per time step, but to iterate until a certain convergence criterion is 

achieved (see figure 6b). Simultaneous coupling means to integrate the different 

processes in one equation system, which is the highest level of coupling and too 

difficult to implement in our case. Simultaneous coupling is thus not taken into 

consideration in this study.   

 

Figure 6: Functional principle of external coupling and iterative coupling of two models: R result, BC 
boundary condition, t time, 𝜀 convergence criterion (source: Becker and Burzel, 2016 in page 281). 

Since our MEP-I-GRHUM coupled model depends on both water balance and energy 

balance, iterative coupling will be employed in our study. This approach is more 

stable and reduces inherent balance errors. The coupled model MEP-I-GRHUM 

applied with the iterative coupling method is shown in figure 7 for a given time step.  

 

Figure 7: Flow chart of the iterative coupling between the MEP model and the I-GRHUM model over 
a time step: 𝑆𝑀𝑖  (%) observed soil moisture, 𝑆𝑀′𝑖  (%) simulated soil moisture from the I-GRHUM 
model, 𝐴𝐸𝑇𝑖  (mm) simulated AET from the MEP model with 𝑆𝑀𝑖  as input,  𝐴𝐸𝑇′𝑖  (mm) simulated 
AET from the MEP model with 𝑆𝑀′𝑖 as input.  

The convergence criterion between 𝐴𝐸𝑇𝑖  and 𝐴𝐸𝑇′𝑖  aims at assimilating the 

information from the two models, MEP and I-GRHUM, and stabilizing the results 

from the coupled model. The maximum number of iterations is set to 30, in case of an 

endless loop. The system can thus go to the next time step when the criterion is 
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satisfied or at the 31
st
 iteration. The outputs of the iterative coupling are 𝑆𝑀′𝑖, which 

includes topsoil humidity and bulk soil humidity, and 𝐴𝐸𝑇′𝑖.  

Figure 8 shows how the iterative coupling is embedded in the structure of the 

modified GR4H model. The interaction between the soil moisture and AET can thus 

be connected to represent the two-way feedbacks in the real system of saturated soil 

and atmosphere.  

 

Figure 8: The diagram of the iterative coupling routing in the modified GR4H model. 

3.5. Model assessment 

The results of the new coupled model are evaluated by applied existing several 

criteria on model performance on the following target variables: AET, soil moisture 

and flow simulation. In our study, model modifications can be accepted only if most 

of the criteria of model performance are improved (or not too much degraded). A 

compromise must be made if significant improvements on some simulation target 

variables are detected at the price of a degradation of other simulation target variables.  

The model performance criteria used are:  

1) The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970): 

𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑠𝑖𝑚,𝑖 − 𝑥𝑜𝑏𝑠,𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑜𝑏𝑠,𝑖 − 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅)
2𝑁

𝑖=1

 
 

(10) 

where 𝑁 is the total number of observations, 𝑥𝑠𝑖𝑚,𝑖 is the simulated value at time step 

i, 𝑥𝑜𝑏𝑠,𝑖  is the observed value at the same time step, 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅ is the mean value of the 

observed data. Essentially, the closer the efficiency is to 1, the more accurate the 

model is.  

2) Kling-Gupta Efficiency (KGE) (Gupta et al., 2009): 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (11) 

where 𝑟 , 𝛼  and 𝛽  are the linear correlation coefficient, the ratio of the standard 

deviation and the ratio of the mean value respectively between observed and 

simulated data. The KGE reaches 1 for a perfect match between observations and the 

model. As a decomposition of NSE, KGE is often used as a model calibration 

criterion for its improved and diagnostically performance.  
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3) The percent bias (PB):  

𝑃𝐵 =
|∑ (𝑥𝑠𝑖𝑚,𝑖 − 𝑥𝑜𝑏𝑠,𝑖)

𝑁
𝑖=1 |

∑ 𝑥𝑜𝑏𝑠,𝑖
𝑁
𝑖=1

× 100 
 

(12) 

This criterion measures the average tendency of the simulations to be larger or smaller 

than the observations.  

4) The rooted mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑠𝑖𝑚,𝑖 − 𝑥𝑜𝑏𝑠,𝑖)
2𝑁

𝑖=1

𝑁
 

 

(13) 

This criterion characterizes the variance of the estimation error and a value of 0 

indicates a perfect fit to the observations.   

5) The coefficient of determination (R²): 

𝑅2 =

{
 

 ∑ (𝑥𝑜𝑏𝑠,𝑖 − 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅)(𝑥𝑠𝑖𝑚,𝑖 − 𝑥𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )𝑁
𝑖=1

√∑ (𝑥𝑜𝑏𝑠,𝑖 − 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅)²𝑁
𝑖=1 √∑ (𝑥𝑠𝑖𝑚,𝑖 − 𝑥𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )²𝑁

𝑖=1 }
 

 
2

 

 

 

(14) 

This criterion measures how well observations are replicated by the model. The range 

of 𝑅2 is from 0 to 1 and the closer to 1 the more total simulated data can be explained 

by the model.  

Note that the mathematical transformation on flow is necessary for high and low flow 

evaluations. From the works by Pushpalatha et al. (2012), a summary of the 

transformations on NSE criterion index is given:  

- 𝑁𝑆𝐸𝑄 is used to evaluate high flows and is of no use for low flow evaluation. 
- 𝑁𝑆𝐸

√𝑄
 provides a more balanced evaluation on both high and low flows. 

- 𝑁𝑆𝐸𝑙𝑛𝑄 emphasizes on the low flows, like the criterion 𝑅𝑀𝑆𝐸𝑄0.2 from the work 
by Chiew et al. (1993).   

In addition, reference high and low flow thresholds are defined in our study as the 

80% (𝑄80%) and 20% (𝑄20%) percentiles, respectively, both estimated from long time 

series of flow observations. The volume of simulated flows over 𝑄80%  and the 

duration of simulated flows under 𝑄20%  are also regarded as criteria for model 

performance.  

4. Materials 
4.1. Study Area: Les Avenelles Catchment 

With an area of 45.6 km² on the plateau of Brie, Les Avenelles is a sub-catchment 

located east of the Orgeval river (in the Orgeval catchment) that flows in the Seine-et-

Marne department in France (see figure 9a). This catchment is an experimental 

catchment monitored by the Oracle team of IRSTEA since 1962. Like an isosceles 

triangle shape, whose geometric summit corresponds to the outlet, the catchment of 

Les Avenelles has a slightly differentiated topography. Influenced by the moderate 

oceanic climate and characterized by a hydromorphic sandy soil, the basin is regularly 

saturated with water and thus predominantly rural and highly anthropogenic 
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(Loumagne and Tallec, 2013). Table 1 summarizes the overall meteorological 

conditions in the Les Avenelles catchment.   

 

Figure 9a. Location of the Orgeval bassin (source: Loumagne and Tallec, 2013 in page 13). Figure 9b. 
Les Avenelles catchment (red edge) is a sub catchment of the Orgeval catchment. Gauging stations and 
rainfall stations are labeled in red points and blue triangles, respectively (Source: Loumagne and Tallec, 
2013 in page 14).  

Table 1. Monthly and annual meteorological averages that characterize the local climatic conditions of 
the Les Avenelles catchment over the period 1970-2017. Data are from the meteorological station of 
Boissy-le-Châtel (code: BOISSY-METEO), situated in south of the Les Avenelles catchment.   

 J F M A M J J A S O N D Annual 

Potential ET (mm) 14 18 41 66 85 104 114 95 64 34 15 12 662 

N rainy days 19 17 15 15 16 14 13 14 17 21 20 20 201 

Rain (mm) 61 53 46 52 63 56 63 59 55 66 59 76 709 

Mean temperature (°C) 3 4 7 10 13 17 19 18 15 11 6 4 11 

Max temperature (°C) 6 7 11 15 18 22 24 24 20 15 10 6 15 

Min temperature (°C) 1 1 3 5 8 11 13 12 10 7 4 1 6 

Air humidity (%) 90 86 81 77 79 80 78 78 82 88 91 91 83 

Solar radiation (kJ/cm²) 0.3 0.5 1.0 1.6 1.9 2.1 2.0 1.7 1.3 0.7 0.4 0.2 1.1 

 

This sub-catchment has recently been equipped with a flux tower and a scintillometer 

instrument, whose locations are indicated in figure 9b, to monitor the AET process 

(described in detail in the “ORE ORACLE instrumentation Report”).  
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4.2. MEP input data and AET field observations 

The flux tower and the scintillometer measurements of AET are in situ measurements 

that are used in our study for their high quality and resolution. The input data of the 

MEP model are from the measurements of the flux tower and the data from the 

scintillometer will serve as the reference observation for the evaluation of the results 

of the MEP model.  

The process of the flux tower data 

treatment is presented in figure 10. The flux 

tower (see photo in figure 11a) can 

continuously measure the ecosystem 

greenhouse gases flow, micro-

meteorological parameters and solar 

radiation at hourly time steps though the 

bound sonic sensors mounted at 1.5m 

above the ground. Analyzed by EddyPro
4
, 

measurements of atmospheric exchanges 

are also produced in a 30-minute time 

resolution. However, after a preliminary 

data quality-control, it was observed that 

this measurement suffers from an energy 

balance problem and the AET series 

derived by EddyPro are not employed in 

our study.  

                            
Figure 11a. The flux tower in Les Avenelles 

catchment (source: ORACLE instrumentation 

report).  

Figure 11b. The scintillometer in Les Avenelles 

catchment (source: ORACLE instrumentation 

report). 
Data from the flux tower, which are of 30-minute temporal resolution for the period 

from 05/2016 to 12/2017, are used as input to the MEP model. The data needed to run 

the MEP model are: air temperature, surface soil temperature at depth of 5 cm, 

specific humidity, net radiation, volumetric soil moisture at depth of 5 cm and 

volumetric soil moisture at depth of 75 cm. There is a missing blank of these data for 

                             
4
 EddyPro (https://www.licor.com) is the software for processing eddy covariance data. 

 
Figure 10. The simplified process of the flux 

tower field data treatment. 

https://www.licor.com/
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two weeks at the end of 12/2016.  As the ET process is not important in winter, we 

assumed that this gap of data in December year 2016 could be filled by the same 

weeks of the year 2017 to obtain a continuous set of data set. 

Wave-physically based, the scintillometer (see photo in figure 11b) is an instrument 

used to detect the change in scintillation of an electromagnetic beam passing through 

the atmosphere as a result of the change in the refractive index of the air along its 

path. The scintillometer is widely accepted due to its ability to quantify the AET at 

landscape scale over several kilometers and to provide continuous AET 

measurements. The ET records of every 30 minutes by the scintillometer are chosen 

to validate the MEP results. The continuous scintillometer data that is available in this 

study is from 05/2016 to 07/2017. Thus, the period for the validation of the MEP 

model results is from 05/2016 to 07/2017. 

4.3. Data for the calibration of the GR4H model 

The dataset SAFRAN
5

 provides the 

meteorological data needed to 

compute PET (see Appendix). It 

produces an analysis at the hourly time 

step using ground data records for an 

8km×8km spatial resolution over 

France (see figure 12). The detailed 

description can be found in Vidal et al. 

(2010). We used this hourly dataset. 

The coordinates we used to extract the 

data for the Penman-Monteith PET 

estimation correspond to the station 

BOISSY-METEO. We considered the 

pixel of BOISSY-METEO station to 

be representative for the entire 

catchment.  

Hourly precipitation and discharge 

time series in Les Avenelles catchment are those from the dataset BDOH-ORACLE
6
. 

In the experimental sites of ORACLE, all the hydro-meteorological elements are 

monitored via a complete measurement network: gauging stations at the outlet of each 

sub-catchment, rainfall stations as well as piezometric stations spreading over the 

whole study area and soil moisture stations in surface and in depth.  

Therefore, in our study, Penman-Monteith PET, areal averaged precipitation (average 

from point rainfall data from stations available in the Les Avenelles catchment, 

namely, BOISCLOS-P09, GOIN-P19, LOGE-P07 and MELARCHEZ-P35, see figure 

9b) and discharge data from the gauging station “Avenelles” for the period 1995-

                             
5

SAFRAN is a reanalysis dataset provided by Météo-France (French national weather service, 

www.meteofrance.com).  
6
The meteorological and hydrological dataset (http://data.datacite.org/10.17180/OBS.ORACLE) is 

produced and managed by IRSTEA.  

 
Figure 12. The France territory is divided into 

8km×8km grids in the dataset SAFRAN 

(meteorological reanalysis from Météo-France). For 

example, this figure shows the air temperature 

(in °C) on 2016-08-01 at 07:00:00. 

http://www.meteofrance.com/
http://data.datacite.org/10.17180/OBS.ORACLE
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2005, 2005-2015 and 1995-2015 are performed to calibrate the GR4H model based on 

𝐾𝐺𝐸
√𝑄

 criteria. The data of Les Avenelles catchment for the period from 1995-2015 

are presented in figure 13. As a result of the calibration of the model for the three 

different periods, we obtain three series of parameters for the GR4H model. The 

parameters and the optimized KGE coefficients are shown in table 2. The averaged 

parameters will be used in the simulation processes for years 2016-2017.  

Table 2. Calibration results of the GR4H model using Penman-Monteith potential evapotranspiration, 
area-averaged precipitation from rainfall stations in Les Avenelles catchment (point stations: 
BOISCLOS-P09, GOIN-P19, LOGE-P07 and MELARCHEZ-P35) and discharge from gauging station 
“Avenelles” for the period 1995-2015 and two sub-periods (1995-2005 and 2005-2015).  

Period X1[mm] X2[mm] X3[mm] X4[h] 𝐾𝐺𝐸√𝑄 (%) 

1995-2005 188.670 -0.114 31.187 8.180 91.28 

2005-2015 200.691 -0.200 32.819 8.258 81.14 

1995-2015 197.540 -0.138 31.088 8.321 87.39 

Average 195.633 -0.151 31.698 8.253 - 

 

 

Figure 13. Penman-Monteith potential evapotranspiration produced from the dataset SAFRAN, 
averaged precipitation from the 4 rainfall stations in Les Avenelles basin and discharge from the 
gauging station “Avenelles” for the period 1995-2015. 

4.4. Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution 

Imaging Spectroradiometer (MODIS), is used in this study to calculate the vegetation 

index to be used in the MEP model. This index is processed and produced by the 

NASA/Goddard Space Flight Center’s GIMMS
7

 group. NDVI is derived from 

imageries processed by the NOAA Advanced Very High Resolution Radiometer 

(AVHRR) satellite instruments. This dataset has a temporal resolution of 8-day 

composite period and a spatial resolution of 250 m × 250 m grid (figure 14). To use 

the NDVI data in the MEP model, we abstracted the data at the geographical 

coordinates where the flux tower is located.  

                             
7
 The Global Inventory Modeling and Mapping Studies (GIMMS) are from the Global Land Cover 

Facility (www.landcover.org) at the University of Maryland through funding support of the Global 
Agricultural Monitoring project by USDA’s Foreign Agricultural Service (FAS). NDVI data is 
available to download at https://gimms.gsfc.nasa.gov/download/MODIS/ 

http://www.landcover.org/
https://gimms.gsfc.nasa.gov/download/MODIS/
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Vegetation growth is highly dependent on seasonal change while changes in short 

periods are rather small. We thus assumed that daily NDVI data could be reasonably 

acquired by the linear interpolation of raw 8-day data. Therefore, continuous daily 

NDVI data for years 2016 and 2017 were acquired for this study, as presented in 

figure 15. 

 

 
 

Figure 14. Normalized Difference Vegetation 
Index (NDVI) image in France for the 
composite period 2017/05/08-2017/05/15 
processed by Terra satellite (Source from 
https://glam1.gsfc.nasa.gov/).  

Figure 15. Normalized Difference Vegetation 
Index (NDVI) evolution in year 2016 and 2017 at 
the coordinate (48°51’21N, 3°10’25E) are 
compared with the averaged NDVI for the period 
2001-2015 

 

4.5. Data Summary 

In this section, a summary of the data used in this study is given in table 3.  

Table 3. Summary of all the input data used for each part of the work and for each model used in this 
study. 

Target Variable Dataset/Field Data Summarized Information Target Model Period 

ETP SAFRAN 

Air temperature, wind speed, specific 

humidity and solar radiation 

parameters at hourly time steps 

GR4H 1995-2015 

AET 

Observation 
Scintillometer 

Latent heat flux (can be converted to 

AET by latent heat of vaporization 

constant) at 30-min time steps 

Compare with 

MEP 
05/2016-07/2017 

AET Simulation Flux Tower 

Air, surface soil temperature, specific 

humidity, net radiation and soil 

humidity at 30-min time steps 

Coupled 

Model & MEP 
05/2016-12/2017 

NDVI MODIS 
NDVIof temporal resolution of 8-day 

composite period 

Coupled 

Model & MEP 
05/2016-12/2017 

Precipitation BDOH-ORACLE 

Precipitation representative of the Les 

Avenelles catchment at hourly time 

steps 

Coupled 

Model 

& GR4H 

1995-2015 & 

05/2016-12/2017 

Discharge BDOH-ORACLE 
Outflow of Les Avenelles catchment 

at hourly time steps 

Coupled 

Model & 

GR4H 

1995-2015 & 

05/2016-12/2017 

https://glam1.gsfc.nasa.gov/
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5. Results 
5.1. Input data analysis 

In order to verify if the MEP model is capable of simulating the AET for a longer 

period than the one studied in the work by Peredo (2017), the input data quality 

control for the period 05/2016-12/2017 was first reviewed. The quality-controlled 

data are: surface soil temperature, air temperature, specific humidity, net radiation, 

surface soil moisture and deep soil moisture. A summary of missing field data from 

the flux tower is shown in table 3, compiled after filling the gap of two weeks at the 

end of 12/2016. From this analysis, we concluded that data from the flux tower could 

be used as input data for the MEP model, since missing percentage of missing data is 

acceptable (less than 5%). The evolution of soil moisture and precipitation for the 

period 05/2016-12/2017 is shown in figure 16. 

Table 3. Summary of missing values of field data from the flux tower (surface soil temperature 𝑇𝑠 (°C), 
air temperature 𝑇𝑎 (°C), specific humidity 𝑄𝑠 (kg/kg), net radiation 𝑅𝑛 (W/m²), surface and deep soil 
moisture 𝜃𝑠 (%) and  𝜃𝑏 (%)). 

Parameter 𝑇𝑠 𝑇𝑎 𝑄𝑠 𝑅𝑛 𝜃𝑠 𝜃𝑏 
Missing Values 52 45 46 245 285 - 

 Missing Percentage (%) 0.37 0.32 0.33 1.74 2.03 0.00 

 

Infiltration is the process of water entering into soil from precipitation and the soil 

moisture is the quantity of water contained in the soil (Maidment, 1993). Normally, 

soil water content is expressed on a volumetric basis. The temporal evolution of soil 

moisture depends on the temporal variability of precipitation (for infiltration) and ET 

(for subtraction). As shown in figure 16, soil moisture increases during the rainfall 

events. The vertical infiltration is expressed as more water content in deeper soil and 

the bulk soil moisture is quantitatively higher than the surface soil moisture, as 

presented in figure 16.  

 

Figure 16. Observed precipitation (PRCP), surface soil moisture and bulk soil moisture for the period 

05/2016-12/2017. Both surface and bulk soil moisture are fed by precipitation. 
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Figure 16 also shows that the variation of the surface soil moisture amplifies more 

quantitatively and shifts more frequently than the deep (bulk) soil moisture. In the 

vertical profiles of soil moisture, decreasing amplitude and increasing phase shift with 

soil depth have been observed (e.g., Wu and Dickinson, 2004). Surface water content 

has an immediate response to the atmospheric forcing, such as precipitation and ET, 

while the longer memory of soil moisture in the deeper soil layers shows their 

persistence in containing the water.  

The evolution of temperature, specific humidity and solar net radiation for the whole 

study period is shown in figure 17. Specific humidity is the ratio of the mass of water 

vapor in a unit mass of moist air. This parameter is mainly dependent on temperature 

and water supply. As temperature increases, the amount of water vapor needed to 

reach saturation also increases as shown in figure 17. 

 

Figure 17. Observed data for air temperature, surface soil temperature, net radiation and specific 

humidity for the period 05/2016-12/2017. Solar net radiation influences the evolution of air and surface 

soil temperature. Specific humidity is mainly influenced by temperature. 

As the only entering source of energy in the Earth system, part of the solar radiation is 

transformed to the augmentation of temperature in the air and the surface soil. Both 

air temperature and surface soil temperature follow the seasonal change of solar net 

radiation (figure 17) while the amplitude of the air temperature is larger than the one 

of the surface soil temperature due to the persistence character of the soil (Wu and 

Dickinson, 2004).  

5.2. Validation of the MEP model 

The time sequence chosen to validate the MEP model is from 05/2016 to 07/2017, for 

which the continuous scintillometer series is available. Figure 18a and figure 18b 

present the comparisons between the results of hourly AET from the MEP model, the 

AET calculated from the GR4H model (see Peredo, 2017 for details), the 

scintillometer field data as well as the PET series, for the period of 05/2016-07/2017. 

Table 4 summarizes the MEP model and the GR4H model performance values on 
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their ability of modeling the AET against the scintillometer field data, in terms of the 

NSE efficiency, PB coefficient, RMSE efficiency and R² criterion.  

Table 4. Performance criteria (NSE, PB, RMSE and R²) with respect to the hourly AET output from the 
MEP model and that extracted from the GR4H model.  

Year 2016 (total value from the scintillometer: 341.48mm; ETP: 494.22mm) 
 NSE PB (%) RMSE R² (%) Sum (mm) 

MEP 0.654 -11.7 0.085 49.8 324.31 
GR4H 0.566 -24.0 0.095 31.9 275.19 

Year 2017 (total value from the scintillometer: 475.54mm; ETP: 425.86mm) 
 NSE PB (%) RMSE R² (%) Sum (mm) 

MEP 0.713 -46.7 0.104 50.6 253.74 
GR4H 0.366 -49.5 0.152 20.5 244.69 

Year 2016-2017 (total value from the scintillometer: 817.02mm; ETP: 920.08mm) 
 NSE PB (%) RMSE R² (%) Sum (mm) 

MEP 0.695 -32.0 0.094 47.2 578.05 
GR4H 0.449 -38.8 0.126 23.4 519.88 

 

  
Figure 18a. Histogram of hourly AET of the 
scintillometer field data (gray), the MEP model 
results (red) as well as the GR4H model results 
(green) for the period from 2016-05-25 11:00:00 
to 2017-07-16 23:00:00. 

Figure 18b. Histogram of hourly AET of the 
MEP model results (red), the GR4H model 
results (green) as well as the Penman Monteith 
PET (gray) for the period from 2016-05-25 
11:00:00 to 2017-07-16 23:00:00. 

 

From the model performance summary in table 4, we can conclude that the AET 

simulation from the MEP model shows a better agreement to the scintillometer 

observations, while both the MEP and GR4H models tend to underestimate AET. This 

better performance for the MEP model is identified from the higher value of NSE, as 

well as R², and lower value of RMSE, compared with those for the AET extracted 

from the GR4H model. This tendency of underestimating AET for both models can be 

explained from the negative values of PB. However, the PET results from Penman 

Monteith formula are also lower than that from the scintillometer field data for year 

2017, which suggests that the scintillometer data might be over measuring ET for the 

year 2017, since PET is meant to be the maximum limit of AET.  

Moreover, a better representation of the seasonal evolution of AET can be seen from 

the MEP simulations from figure 18. Particularly, we observe that the MEP model can 

simulate the condensation processes, expressed as the negative values of AET, which 
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cannot be obtained from the GR4H simulations.  

Figure 19 shows the accumulated curves of AET from the MEP and GR4H models, 

plotted against the accumulated curve of the scintillometer field data. The MEP model 

results show a better fit for the year 2016, compared with the GR4H model results, 

which indicates that the MEP model can quantitatively better model the AET process. 

The unmatched situation for the year 2017 is probably due to the overestimation 

obtained from the measurement provided by the scintillometer. This can be explained 

by the fact that the quality control treatment of these data is still in progress, and the 

data has not been fully validated yet. Our results are an indication that in-depth 

validation is still needed. This difference in the year 2017 can also be seen in table 4, 

where the total AET obtained from the MEP model for 05/2016-12/2016 is 324.31 

mm, very close to the observed field data of 341.48 mm, and the total scintillometer 

field data for 01/2017-07/2017 is 475.54 mm, much higher than the PET estimation of 

425.86 mm. 

 

Figure 19. The accumulated curve of the AET series calculated by the MEP model (red), the GR4H 

model (green) and the scintillometer field data (gray) for 05/2016-12/2017. 

Overall, compared with the AET estimation performed inside the GR4H model, which 

is based on the PET and the soil moisture extraction function, a better AET simulation 

can be obtained from the MEP model. This is not only because it follows the seasonal 

evolution of AET but also due to the quantitative correctness and the better model 

performance when simulations are evaluated against the observed data. Despite the 

imperfectness of the observed data from the scintillometer that was used as a 

benchmark, notably for the year 2017, the potential of the MEP model to produce 

better AET results than the GR4H model is confirmed, at least for the year 2016, 

which provides a possibility to integrate this MEP model in the GR4H model to 

increase its modeling performance.  

The response of the MEP model to the resolution of its input data is also investigated. 

The effect of the aggregation of the input data on the MEP model is presented in 

figure 20. The input data are aggregated, at the time steps of: one hour, six hours, 
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twelve hours and one day. They are then used separately within the MEP model. The 

longer the aggregation period, the more the amplitude of AET variation decreases. 

The effect of aggregation suggests that sub-daily time scales could be too noisy to 

derive meaningful information from the MEP model to the water-balance framework. 

As such, a daily estimation from the MEP model might be better capable of resolving 

the noise and smoothing the inherent inaccuracy to maximize the simulation 

performance in the water-balance framework.  

 

 

Figure 20. The effect of input data aggregation in the MEP model for the whole simulation period (top) 

and a zoom for shorter period from 26/05/2016 to 14/06/2016 (bottom). 
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5.3. MEP-GR4H modeling chain  

The chain mechanism from the work of Peredo (2017), an uncoupled conjunctive 

modeling, was also tested within our longer study period by doing a simple exchange 

of input and output between the GR4H model and the MEP model. In this uncoupled 

approach, we consider the successive execution of the two models: the output of the 

MEP model, which is the simulated AET data, is used as input to the GR4H model. 

Therefore, a feedback from the GR4H model to the MEP model is not incorporated. 

The internal transformation from PET to AET in the GR4H model is also deleted and 

the output from the MEP model is directly incorporated in the evolution of the state of 

the production store in the GR4H model (figure 5a).  

In order to test this chain, two sets of parameters have been derived from the 

calibration of the GR4H model: one from using GR4H in its original structure 

(without MEP) and another using the MEP-GR4H modeling chain. These two sets of 

parameters and their respective periods of calibration are presented in table 5. The 

parameter set (Param1) is obtained using the Penman-Monteith PET and it varies 

from the parameter set (Param2) obtained from the simulation results of the MEP-

GR4H modeling chain (using AET and not PET as input). The use of different sources 

of forcing data in the same general hydrological framework (the GR4H structure), 

PET versus AET, influences the model parameterization. An improved calibration 

performance can be found in the MEP-GR4H chain, since the 𝐾𝐺𝐸
√𝑄

 criterion 

obtained is the highest (82.08%).  

Table 5. Two sets of parameters tested in the MEP-GR4H chain. The first set of parameters is derived 
from the calibration of the GR4H model for 1995-2015 (Param1). The second set of parameters is 
derived from the calibration of the MEP-GR4H chain for 05/2016-12/2017 (Param2).   

Set Calibration period X1 [mm] X2 [mm] X3 [mm] X4 [h] 𝐾𝐺𝐸√𝑄 (%) 

Param1 1995-2015 195.633 -0.151 31.698 8.253 76.28 

Param2 05/2016-12/2017 287.553 -1.592 52.383 7.198 82.08 

 

Due to the current lack of long series data for the MEP model, the calibrated results 

from the MEP-GR4H chain (Param2) can only be compared with the simulated results 

from the GR4H model using Param1 for the short period from 05/2016 to 12/2017 

(figure 21a). Even though the MEP-GR4H chain and the original GR4H model share 

the same general model structure (production and routing function), the use of 

different sources of input data influences the model performance. The position of the 

simulated flow from the MEP-GR4H chain during the low flow period is relatively 

higher than that of the GR4H model and, in general, closer to the observations. Thus, 

an improvement of the stream flow estimation during the drought period is observed 

from the MEP-GR4H chain, compared with the original GR4H model.  

The results of the simulation of the MEP-GR4H chain with the two sets of parameters 

presented in table 5 are shown in figure 21b. The simulations of the MEP-GR4H 

chain with calibrated parameters from the GR4H model (Param1) tend to over-

estimate the stream-flow, which suggests that the use of PET in the calibration of the 

GR4H model tends to result in less extraction of water from the production reservoir 

(comparatively to the use of AET in the calibration). This is an indication of an 

underestimation of AET in the water-balance framework based in the GR4H model 

(original structure). This is also observed from the table 4, where the sums AET in the 
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GR4H model for each year 2016, 2017 and for the whole period 2016-2017 are lower 

than the sums of AET produced from the MEP model, as well as from the field 

observations. 

 

Figure 21a. Stream-flow simulations from the GR4H model and the MEP-GR4H chain, compared 

against observations for the period from 05/2016 to 12/2017. 

 

Figure 21b. Stream-flow simulations of the MEP-GR4H chain using different sets of parameters (see 

table 5) for the period from 05/2016 to 12/2017. 



- 26 - 

 

Table 6 summarizes the model performance criteria of the GR4H model with Param1 

(blue dashed-line in figure 21a), the MEP-GR4H chain with Param1 (green dashed-

line in figure 21b) and the MEP-GR4H chain with Param2 (red line in figure 21a and 

21b) on high flow and low flow evaluations for 05/2016-12/2017.  

Table 6. High and low flow evaluations on the GR4H model and the MEP-GR4H chain in terms of 
NSE, RMSE, MAE, high flow volume and low flow duration. The observed volume of the flow above 
the 80% threshold for 05/2016-12/2017 is 133 mm. The observed duration of the flow below the 20% 
threshold for 05/2016-12/2017 is 50 days.  

High Flow Evaluation 
Model and Parameter set 𝑁𝑆𝐸𝑄(%) 𝑅𝑀𝑆𝐸𝑄 Volume aobove Q80% (mm) 

GR4H with Param1 79.13 0.025 168 
MEP-GR4H with Param1 -0.13 0.058 303 
MEP-GR4H with Param2 65.32 0.032 130 

Low Flow Evaluation 
Model and Parameter set 𝑁𝑆𝐸𝑙𝑛𝑄(%) 𝑅𝑀𝑆𝐸𝑄0.2  Duration bolow Q20% (day) 

GR4H with Param1 -27.97 0.072 213 
MEP-GR4H with Param1 -9.21 0.083 68 
MEP-GR4H with Param2 13.00 0.065 120 

Balanced Evaluation 
Model and Parameter set 𝑅2(%) 𝑁𝑆𝐸√𝑄(%) 𝑀𝐴𝐸𝑄 

GR4H with Param1 82.58 66.38 0.010 
MEP-GR4H with Param1 46.02 14.45 0.019 
MEP-GR4H with Param2 43.70 63.92 0.011 

 

When forced by the results of AET from the MEP model, the MEP-GR4H chain 

shows an overall better performance in low flow simulation. It increases the 𝑁𝑆𝐸𝑙𝑛𝑄  

criteria to 13% from the value of -27.97% produced by the GR4H model, which is 

driven by PET input. The evaluation of drought duration of flow bolow 𝑄20% for the 

MEP-GR4H chain with AET input is improved from 213 days to 120 days, compared 

with the observed 50 days of drought duration. This improvement of low flow 

evaluations can thus be explained by the use of AET in the GR4H model structure. As 

for the high flow evaluation, the MEP-GR4H chain does not degrade much the 

simulations (𝑁𝑆𝐸𝑙𝑛𝑄  values decrease from 79.13% to 65.32%) and a better estimation 

of the flood volume of high flows (volume above 𝑄80%) is found. Compared with the 

observed high flow volume of 133 mm, the result from the MEP-GR4H chain (130 

mm) shows a better match than the 168 mm obtained from the GR4H model 

simulations.   

These improvements of AET as forcing data indicate the potential of the MEP-GR4H 

chain to provide more accurate high and low flow simulations.  

5.4. The coupled model (MEP-I-GRHUM-GR4H) 

In the original GR4H model and in the MEP-GR4H chain, the interaction between 

soil moisture evolution and ET calculation is typically conducted following a one-way 

chain procedure, i.e., one model component acts as input and the other as response. In 

the fully coupled run we developed in this study, the MEP model extracts information 

from the two-layer production reservoir of the “Interception-GRHUM-GR4H” model 

(see figure 5b) and the change in the two layer pattern due to the results produced 

from the MEP model acts, in return, again on the MEP model. This bi-directional 

simulation of the interaction process is combined with a convergence criterion for the 

iterative coupling as shown in figure 7. This iterative approach is necessary in case 
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that the outputs of the coupled model get unstable and drift away from the reality.  

With this increased complexity, compared with the original GR4H model, evaluations 

on model performance on soil moisture, AET and flow simulations are presented 

below.  

1) Soil moisture evaluation 

In the first place, the coupled model is calibrated against the observed surface/bulk 

soil moisture data from the Flux Tower to check its performance in terms of modeling 

soil moisture. It should be note that this calculated soil moisture in the production 

reservoir of the coupled model is a simple conceptualization of the ratio between 

current water capacity and maximum water capacity, which is far from the physically 

realistic water content due to the lack of modeling persistence and time lag in the soil 

nature (as presented in section 5.1). Thus, a roundabout way of evaluating soil 

moisture is to use the relative soil moisture, which is adapted in this section to replace 

the soil moisture. 

The observed volumetric soil moisture in depths of 5 cm and 75 cm of the Flux 

Tower, which here represent the soil moisture in the surface layer and the bulk layer 

of the soil moisture reservoir, respectively, in the two-layer soil system, can be used to 

calibrate the parameters 𝐼𝑚𝑎𝑥 (mm), 𝑊𝑠𝑚𝑎𝑥 (%), 𝑊𝑔𝑚𝑎𝑥 (%) and 𝑇ℎ (-) for the period 

05/2016-12/2017. These four parameters, presented in section 3.3, are: the maximum 

capacity of the interception reservoir, the maximum water capacity in surface layer, 

the maximum water capacity in the bulk layer and the Thomas parameter, 

respectively. In this study, this global parameterization was performed based on 

Differential Evolution algorithm (Ardia et al., 2011).  

Hence, two sets of parameters can be obtained on the basis of the observed surface 

and bulk soil moisture (table 7). The surface soil shows a better calibration result due 

to the fact that water stored at the surface has an immediate response to the 

atmospheric forcing, while the deeper soil has a longer memory (persistence) and this 

quick response can be approximated to a reservoir model. 

Table 7. Two sets of parameters of 𝐼𝑚𝑎𝑥  (mm), 𝑊𝑠𝑚𝑎𝑥  (%), 𝑊𝑔𝑚𝑎𝑥  (%) and 𝑇ℎ (-) derived from the 
global parameterization on the basis of observed surface and bulk soil moisture for 05/2016-12/2017.  

Calibration against observed surface soil moisture 

𝐼𝑚𝑎𝑥 (mm) 𝑊𝑠𝑚𝑎𝑥  (%) 𝑊𝑔𝑚𝑎𝑥  (%) 𝑇ℎ (-) 𝐾𝐺𝐸 (%) 

0.40 0.6728 0.3739 0.9996 84.27 

Calibration against observed bulk soil moisture 

𝐼𝑚𝑎𝑥 (mm) 𝑊𝑠𝑚𝑎𝑥  (%) 𝑊𝑔𝑚𝑎𝑥  (%) 𝑇ℎ (-) 𝐾𝐺𝐸 (%) 

0.01 0.8909 0.7253 0.9984 37.90 

 

The two sets of parameters are used separately to simulate both the surface and bulk 

soil moisture for period from 05/2016 to 12/2017 and then the result of the bulk soil 

moisture in the coupled model is compared with that in the production reservoir in the 

GR4H model. The soil moisture simulated from the GR4H model for the same period 

is calculated from the averaged parameters in table 2.  
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Table 8 represents the performance criteria in terms of RMSE efficiency, Pearson’s 

correlation coefficient, R² criterion and KGE efficiency. In general, the bulk soil 

moisture in the coupled model shows a better performance than that in the production 

reservoir of the GR4H model. The correlation test, R² criterion and KGE efficiency of 

the bulk soil moisture in the coupled model have greater values.  

In addition, the surface soil moisture in the coupled model outstands by showing a 

very good performance. This good performance in the modeling of surface soil 

moisture (quick response layer) suggests the validity of the atmosphere-soil system 

incorporated within the MEP model, which subtract water from the surface layer, and 

the Thomas model, which drains away water from this layer.  

The soil nature changes with the depth and the weaker performance of the bulk soil 

moisture might be ascribed to this. The progress of water flux in the two-layer 

production reservoir in the coupled model also points out to the possibility of 

integrating several soil layers to provide more detailed information. However, the key 

factor remains to well model the persistence and the time lag in the deeper soil layer.  

Table 8. Performance criteria (RMSE, Pearson’s Correlation, R² and KGE) of the surface soil moisture 
in the coupled model, the bulk soil moisture in the coupled model and the soil moisture in the 
production reservoir of the GR4H model for 05/2016-12/2017. The soil moisture in the GR4H model is 
derived using the averaged parameters in table 2. 

Simulation based on the parameters from the calibration of the surface soil moisture 
 𝑅𝑀𝑆𝐸 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (%) 𝑅2 (%) 𝐾𝐺𝐸 (%) 

Surface 0.1247 84.45 68.21 84.27 
Bulk 0.3550 51.95 14.29 32.80 

GR4H 0.3178 33.77 8.39 31.52 
Simulation based on the parameters from the calibration of the bulk soil moisture 

 𝑅𝑀𝑆𝐸 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (%) 𝑅2 (%) 𝐾𝐺𝐸 (%) 
Surface 0.1548 73.32 46.02 65.14 

Bulk 0.3121 46.45 14.03 37.90 
GR4H 0.3178 33.77 8.39 31.52 

 

Figure 22a and figure 22b present the simulations of relative soil moisture from the 
coupled model, based on the parameters from the calibration using the observed 
surface soil moisture. We present the simulations for surface soil moisture and bulk 
soil moisture, respectively, for the period 05/2016-12/2017. Figure 23a and figure 23b 
presents the simulations of relative soil moisture from the coupled model, based on 
the parameters from the calibration using the observed bulk soil moisture. Again, we 
present the simulations for surface soil moisture and bulk soil moisture, respectively, 
for the same period 05/2016-12/2017. 

From figure 22a/b and figure 23a/b, we can see that the simulation of surface soil 

moisture in the coupled model shows a better match to the observed data than the 

simulation of bulk soil moisture. This indicates that the current model structure 

(reservoir model in the coupled model and the original GR4H model) might be less 

capable in simulating the global soil moisture (including in deeper layers).  

Overall, the two-layer system in the coupled model can provide a more detailed water 

flux evolution in the production reservoir, compared with the original GR4H model. 

The coupled model also shows a better performance in modeling soil moisture.  
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Figure 22a. Surface soil moisture simulation of the coupled model for 05/2016-12/2017 based on the 

parameters calibrated using the observed surface soil moisture.  

 

Figure 22b. Bulk soil moisture simulation of the coupled model for 05/2016-12/2017 based on the 

parameters calibrated using the observed surface soil moisture. The soil moisture simulation in the 

GR4H model for 05/2016-12/2017 is also presented.  
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Figure 23a. Surface soil moisture simulation of the coupled model for 05/2016-12/2017 based on the 

parameters calibrated using the observed bulk soil moisture.  

 

Figure 23b. Bulk soil moisture simulation of the coupled model for 05/2016-12/2017 based on the 

parameters calibrated using the observed bulk soil moisture. The soil moisture simulation in the GR4H 

model for 05/2016-12/2017 is also presented.  

2) AET evaluation  

In the atmosphere-vegetation-soil interactions of the coupled model, part of 

precipitation is intercepted by a reservoir at the top of the coupled model structure, 

which allows temporarily storing a small amount of rainfall. The stored water 

evaporates at the actual rate produced by the MEP model. The exceeded rainfall from 

the interception reservoir infiltrates in the two-layer production reservoir of the 

coupled model, where the process of ET in the bulk soil (including ET in the surface 
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soil) takes place.  

It is thus also interesting to evaluate the performance of the coupled model in 

modeling AET, which is presented hereafter. Whether the energy-balance MEP model 

still remains energy-closed in the coupled model is also examined. The simulation 

parameters obtained from the calibration against the observed surface soil moisture 

(table 7) are used to investigate the model performance and the energy conservation.  

Table 9 presents the energy balance (expressed in water quantity) in the ET process of 

the coupled model. The transformation from energy to water quantity can be 

understood as follow: the energy needed to evaporate water is equivalent to the 

amount of water that is evaporated by this energy. In the coupled model, the total 

energy in the system is divided in two parts: one used to evaporate the intercepted 

water and the other used to carry out the ET process in the bulk soil. The sum of these 

two parts for the 05/2016-12/2017 study period is 595.02 mm, which gives an error of 

1.35% when comparing this sum with the total energy. This means that we can 

consider the system as an energy-closed system.  

Table 9. Energy balance in the coupled model for the 05/2016-12/2017 study period. Ei is the 
evaporation from the interception reservoir, Eg the ET from the bulk soil, Sum the sum of Ei and Eg, 
Ett the total ET from the coupled model and ∆ the error between Sum and Ett.  

Period Ei (mm) Eg (mm) Sum (mm) Ett (mm) ∆ (%) 

05/2016-12/2017 37.32 557.70 595.02 587.11 1.35 

 

The AET simulation of the coupled model is based on the MEP model whose structure 

is embedded in the two-layer system in the production reservoir. From the analysis of 

table 9, the coupled model maintains the energy-balanced character originated from 

the MEP model. However, the AET simulation of the coupled model is found to drift 

away from the MEP model simulation (figure 24).  

 

Figure 24. The accumulated AET curves between the coupled and MEP model are presented. 

The total AET simulated from the MEP model for the period 05/2016-12/2017 is 

716.42 mm, which is greater than that from the coupled model (595.02 mm). This 

deviation can be explained by the different soil moisture input to the MEP and the 

coupled models: the soil moisture used in the MEP model is the observed data while 
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the simulated soil moisture is used in the coupled model to produce AET. Even 

though a convergence criterion (figure 7) was introduced in the model coupling 

process to stabilize the iterative coupling, the divergency could not be avoided, 

probably due to the weak simulation of the soil moisture in the bulk soil.  

Overall, the AET simulation of the coupled model can be considered satisfactory, 

given the limits of a good representation of the soil moisture in the bulk soil. This 

result indicates that the two-layer system might not be capable enough to represent the 

evolution of soil moisture in the whole bulk. Still, energy remains closed in the 

coupled model.  

3) Stream-flow evaluation 

The fully coupled model allows modeling the complete regional water cycle, from the 

top of the atmosphere, via the land surface and the bulk soil, till the outflow of the 

catchment. The energy-balance model, the MEP model, is coupled in the water-

balance framework. Whether the energy-closed MEP model can provide robust 

estimations in a water-balance framework and whether the water balance can still be 

acquired in the coupled model are investigated here.  

To achieve the calibration of both soil moisture and stream flow at the same time, the 

calibrated results presented in section 1 are used here. Since the parameters calibrated 

against the observed surface soil moisture show a better performance, the results with 

these parameters from the two-layer system production store are adapted to be used as 

input to the routing store in the GR4H model and to calibrate the remaining 

parameters (X2, X3, X4) for the study period from 05/2016 to 12/2017. Table 10 

presents the final set of parameters of the coupled model. Table 11 summarizes the 

performance criteria of the coupled model when it runs with the parameters presented 

in table 10. Performance is evaluated on high flows and low flows for the period 

05/2016-12/2017. 

Table 10. The set of parameters of the coupled model for the period 05/2016-12/2017.  

𝐼𝑚𝑎𝑥 (mm) 𝑊𝑠𝑚𝑎𝑥  (%) 𝑊𝑔𝑚𝑎𝑥  (%) 𝑇ℎ (-) 𝑥2 (mm) 𝑥3 (mm) 𝑥4 (mm) KGE (%) 

0.40 0.6728 0.3739 0.9996 0.11 13.13 8.44 71.51 

 

Table 11. High and low flow evaluations on the coupled model and the GR4H model in terms of NSE, 
RMSE, MAE, high flow volume and low flow duration. The observed volume of the flow above the 80% 
threshold for 05/2016-12/2017 is 133 mm. The observed duration of the flow below the 20% threshold 
for 05/2016-12/2017 is 50 days.  

High Flow Evaluation 
Model  𝑁𝑆𝐸𝑄(%) 𝑅𝑀𝑆𝐸𝑄 Volume (mm) 

The coupled model 71.04 0.029 152/133 
The GR4H model 79.13 0.025 168/133 

Low Flow Evaluation 
Model 𝑁𝑆𝐸𝑙𝑛𝑄(%) 𝑅𝑀𝑆𝐸𝑄0.2  Duration (day) 

The coupled model -82.97 0.091 236/50 
The GR4H model -27.97 0.072 213/50 

Balance Evaluation 
Model 𝑅2(%) 𝑁𝑆𝐸√𝑄(%) 𝑀𝐴𝐸𝑄 

The coupled model 50.46 41.62 0.014 
The GR4H model 82.58 66.38 0.010 
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From the criteria values shown in table 11, the coupled model does not outperform the 

original GR4H model. However, it also does not degrade much the simulations, 

compared with the original GR4H model, especially when considering the high flows. 

Figure 25 presents the simulation results of the coupled and the GR4H models for the 

study period (05/2016-12/2017). Despite the lower general performance, the energy-

balance model MEP incorporated in the water-balanced framework (the coupled 

model) can still show relatively good simulations of high and low flows. The results 

point out the potential of incorporating the energy-balance model in water-balance 

framework, although further studies are still needed to try to improve the performance 

of the coupled model in terms of stream-flow simulation.  

 

Figure 25. Discharge simulations of the coupled model (red line), compared with the GR4H model 

(dotted blue line). 

Since the coupled model has the potential to produce acceptable flow simulations, an 

evaluation of the water balance is presented in table 12.  

Table 12. Water balance sheet in the GR4H and coupled model for 05/2016 – 12/2017 (P, precipitation 
in mm; Q, simulated outflow in mm; E, actual evapotranspiration in mm; S, soil water content change 
in mm; X, groundwater exchange in mm; R, flow routing change in mm). Note that the sum of the 
observed outflow is 298.07 mm.  

P (mm) Q (mm) E (mm) S (mm) X (mm) R (mm) ∆ (mm) 
+1124.33 -308.65 -743.03 -31.80 -39.89 -0.99 -0.03 
+1124.33 -303.14 -587.11 -32.43 +63.74 -0.42 +264.97 
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We can see that the coupled model does not make full use of the water precipitated 

and the water budget is not closed (a quantity of 267.97 mm remains available). It 

seems this amount of water is consumed in the inherent convergence of the iterative 

coupling during each coupling run. One possible way to reduce the water wasted in 

this part of the modeling framework, and the inherent error it creates, could be to 

reduce the time step of the coupling run. The hourly time step might amplify the error 

and a daily time step might be necessary to smooth the inherent inaccuracy. This can 

also be seen from the effect of aggregation of the MEP model shown in figure 20.  

Overall, the coupled model shows a relatively acceptable performance in stream flow 

simulation. Whether additional improvements to the energy-balance model 

incorporated in the water-balance framework can enhance the water (mass) 

conservation results needs however further investigation. It would be interesting, for 

instance, to simulate with longer time step to reduce the inherent error or to change 

the implementation of the coupling technique. 

6. Discussion and Conclusion 

Two aspects are investigated in this study: one, what is the impact of the 

straightforward use of AET input on hydrological modeling, avoiding the use of PET; 

the other, whether and how an energy-balance model can be coupled with a water-

balance hydrological model.  

When forced by AET, the hydrological model GR4H performs relatively better than 

when the model is driven by PET input. Hence, the first question is answered: the 

straightforward use of AET can provide better results in hydrological modeling as it 

reduces the input uncertainties. As for the second aspect, our method was to build a 

new model based on the original GR4H model. Our goal was to replace the GR4H 

production reservoir with the two-layer model GRHUM, so that the energy-balance 

model MEP could be incorporated into the system through model coupling. Besides, 

an interception reservoir was added on the top of the system to represent the whole 

water flux in the vegetation-atmosphere-soil interactions. The coupled model system 

allows modeling the complete water cycle of the catchment and the simulations 

obtained were of quite acceptable performance. Hence, an energy-balance model can 

be coupled with a hydrological model and provide useful information for the 

modeling framework.  

However, during the integration of the MEP model and the hydrological models used 

in this study, we have been confronted with a major disadvantage, which is the fact 

that their respective approaches are not of the same nature. The MEP model is semi-

physical and the two-layer system (GRHUM) relies on a simplified physical 

approach, while the new coupled model is also based on a lumped and conceptual 

hydrological model (GR4H), which does not involve any measureable physical 

relationship. For this reason, an iterative coupling method was implemented in our 

study to make the models more compatible.  

Even though the coupled model can provide acceptable simulation results, the water 

balance is found to break. An inherent error, which loses water in the convergence 

criterion, seems to be the main cause of this non-closure of the water balance. This 
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may be related to the second difficulty we have been confronted with, which is that 

the AET produced in the coupled model drifted away from the original MEP model, 

which might indicate a weak connection between the models.  

Further studies are thus needed to pursue the investigations. Firstly it would be 

interesting to test the use of a longer time step at each run in the iterative coupling as 

it can smooth the noise of simulated data. Also, the pattern of the coupling mechanism 

could be enhanced to reduce this unbalanced chaos and to stabilize the effects of 

divergency.   

Given that the coupled model has the advantage of simulating two more outputs, the 

surface/bulk soil moisture and the AET, the slight decrease of the numerical criteria 

for the performance of the flow simulation by the coupled model does not call into 

questioning the interest of this coupled model and the utility of the modifications of 

the production function introduced for the first time in this study. Still, more 

investigation is needed in order to better understand the feasibility of the energy-

balance model coupled with a water-balance framework.  
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Appendix 

1. The MEP model formulation 

The MEP principle comes down to the dissipation function or the entropy production 

function:  

 
𝐷 ≡ 2∑𝜆𝑘𝐹𝑘

𝑚

𝑘=1

 
 

(1) 

where 𝜆𝑘 (1 ≤ 𝑘 ≤ 𝑚)  are the Lagrange multipliers associated with the given 

constraints 𝐹𝑘(1 ≤ 𝑘 ≤ 𝑚)  and 𝜆𝑘  must be expressed as explicit functions of 𝐹𝑘 

(Dewar, 2005). By seeking the extreme of the dissipation function, the most likely 

evolution can thus be speculated. Analogously, dissipation functions for resolving ET 

restricted under the energy conservation can be outlined in two situations: bare-soil 

and vegetated land surface.  

1) Bare-soil land surface 

The dissipation function is formulated as:  

 
𝐷(𝐸,𝐻, 𝐺) ≡

2𝐺2

𝐼𝑠
+
2𝐻2

𝐼𝑎
+
2𝐸2

𝐼𝑒
 

 

(2) 

where G, H as well as E are the ground, sensible and latent heat flux (𝑊𝑚−2 ) 

respectively. The corresponding 𝐼𝑠 , 𝐼𝑎 and 𝐼𝑒  are the thermal inertia parameters 

(𝑊𝑚−2𝐾−1𝑠1/2) to each heat flux.  

The physically-based parameter 𝐼𝑠, defined as the saturated soil thermal inertia here 

can be calculated as: 

 𝐼𝑠 = 𝐼𝑑𝑠 + √𝜃𝐼𝑤 (3) 

where 𝜃 is the volumetric soil moisture; 𝐼𝑑𝑠 = √𝜌𝑑𝑠𝑐𝑑𝑠𝑘𝑑𝑠 the thermal inertia of local 

dry soil with 𝜌𝑑𝑠  the density (vary between 1.0~1.6×10
3
 𝑘𝑔𝑚−3), 𝑐𝑑𝑠  the specific 

heat (around 0.8 𝑘𝐽𝑘𝑔−1𝐾−1) and 𝑘𝑑𝑠 the heat conductivity (in most cases less than 

0.5 𝑊𝑚−1𝐾−1 ); 𝐼𝑤 = √𝜌𝑤𝑐𝑤𝑘𝑤  the thermal inertia of liquid water with 𝜌𝑤  the 

density (1.0×10
3
 𝑘𝑔𝑚−3), 𝑐𝑤  the specific heat (4.18 𝑘𝐽𝑘𝑔−1𝐾−1) and 𝑘𝑤  the heat 

conductivity (0.58 𝑊𝑚−1𝐾−1). Alternatively, a global map of 𝐼𝑠 analytical solution 

was produced by Bennett et al. (2008) in six-hour, daily and monthly temporal 

resolution, which is applied in the work of Peredo (2017).  

𝐼𝑎, the quasi thermal inertia for turbulent heat conduction in the air, is deduced from 

the eddy diffusivity and temperature gradient based on Monin-Obukhov similarity 

theory (MOST) (Monin and Obukhov, 1954; Arya, 1988; Wang and Bras, 2009). It is 

expressed as:  

 

𝐼𝑎 = 𝜌𝐶𝑝√𝐶1𝜅𝑧 (𝐶2
𝜅𝑧𝑔

𝜌𝐶𝑝𝑇0
)

1
6

|𝐻|
1
6 ≡ 𝐼0|𝐻|

1
6 

 

(4) 

where 𝐼0 is referred to as the “apparent thermal inertial of the air”, which depends 

only on external parameters, 𝑧  the vertical coordinate (𝑚 ) and 𝑇0  the reference 
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temperature (~ 300 𝐾). The internal parameters 𝜌 , 𝐶𝑝 , 𝜅  and 𝑔  are the air density 

(1.22 𝑘𝑔𝑚−3), the heat capacity of air (1.00 𝑘𝐽𝑘𝑔−1𝐾−1), the Von Karman constant 

(0.40) and the gravitational acceleration (9.81 𝑚𝑠−2 ) respectively. The empirical 

coefficients 𝐶1 and 𝐶2 of the extremum solution of MOST are taken as follows:  

 
𝐶1 = {

√3 𝛼⁄ ,
2 (1 + 2𝛼),⁄

 
𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

𝑠𝑡𝑎𝑏𝑙𝑒 

 
𝐶2 = {

𝛾2 2⁄ ,
2𝛽,

 
𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

𝑠𝑡𝑎𝑏𝑙𝑒 

where the constants are estimated as 𝛼  ~ 0.75 or 1, 𝛽  ~ 4.7, 𝛾2  ~ 9. The stable 

empirical coefficients are applied for nocturnal periods, while the unstable ones are 

for the diurnal periods. A detailed derivation procedure of 𝐼𝑎  can be found in the 

Appendix B given in Wang and Bras (2009). 

The parameter 𝐼𝑒 , the quasi thermal inertia for the transport of latent heat 

accompanied by the movement of water vapor in the atmospheric boundary layer 

(ABL) and the flow of liquid water in the soil (Wang and Bras, 2011), is proposed as 

an exploratory analogy of 𝐼𝑎.  

 𝐼𝑒 ≡ 𝜎𝐼𝑎 (5) 

A dimensionless coefficient 𝜎 is introduced as the transition layer from soil to air 

which characterizes the state of the evaporating surface:  

 
𝜎 =

𝜆2

𝐶𝑝𝑅𝑣

𝑞𝑠

𝑇𝑠
2 

 

(6) 

where external parameters are 𝑇𝑠  the skin soil temperature (𝐾) and 𝑞𝑠  the surface 

specific humidity (𝑘𝑔/𝑘𝑔). 𝜆, 𝑅𝑣  and 𝐶𝑝  are the latent heat of vaporization liquid 

water (~ 2501−2.36(𝑇𝑠 − 273.15), 𝑘𝐽/𝑘𝑔), the gas constant for water vapor (461.5 

𝐽𝑘𝑔−1𝐾−1 ) and the heat capacity of air (1.00 𝑘𝐽𝑘𝑔−1𝐾−1 ), respectively. The 

arguments of the experience-based or inferred postulation on 𝜎 are expanded in the 

Appendix A in Wang and Bras (2011). When in lack of 𝑞𝑠 observation data, 𝑞𝑠 can be 

willingly estimated from the Clausius-Clapeyron equation where relative humidity 

and temperature are needed (see Appendix A1).  

Hence, under the energy conservation for a supposed net radiation 𝑅𝑛: 

 𝑅𝑛 = 𝐺 + 𝐻 + 𝐸 (7) 

and by minimizing the dissipation function 𝐷(𝐸,𝐻, 𝐺) as the constraint condition is a 

linear function (Dewar, 2005), surface heat flux can be deduced. 

 
𝐺 =

𝐵(𝜎)

𝜎

𝐼𝑠
𝐼0
𝐻|𝐻|−

1
6 

 

(8) 

 𝐸 = 𝐵(𝜎)𝐻 (9) 

𝐵(𝜎) here is formulated as the function below,  

 

𝐵(𝜎) = 6(√1 +
11

36
𝜎 − 1) 

 

(10) 

which refers to the reciprocal relationship of Bowen ratio (Bowen, 1926) and it 
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strongly accords with the classical Priestley model whose application in land surface 

is inconvenient due to the parameterization process (Priestley, 1959; Wang and Bras, 

2011). Finally, the bare soil evaporation 𝐸𝑣 can be obtained in 𝑚𝑚/𝑠.  

 
𝐸𝑣 =

𝐸

𝜌𝑤𝜆
 

 

(11) 

2) Vegetated land surface  

Following the pattern above, the MEP principle can be applied to a vegetated land 

surface. As a limiting case of bare-soil, when 𝐼𝑠 ≈ 0 due to the negligible leaf surface 

thermal inertia number, whose magnitude is smaller than two to three orders 

compared with that of the soil, only transpiration is considered (Wang and Bras, 

2011). Thus, the leaf surface heat flux G can be neglected and the entered energy, net 

solar radiation, is carved up by sensible as well as latent heat flux on the leaf surface.  

The term E, latent heat flux, and H, the sensible heat flux, can be expressed as: 

 
𝐸 =

𝑅𝑛

1 + 𝐵−1(𝜎)
 

 

(12) 

 
𝐻 =

𝑅𝑛

1 + 𝐵(𝜎)
 

 

(13) 

where 𝐵(𝜎) is given in equation (10) and 𝜎 in equation (6). Note that 𝑇𝑠 (𝐾) and 𝑞𝑠 

(𝑘𝑔/𝑘𝑔) represent the leaf temperature and leaf surface specific humidity. The vegetal 

transpiration 𝑇𝑟 can thus be calculated in 𝑚𝑚/𝑠.  

 
𝑇𝑟 =

𝐸

𝜌𝑤𝜆
 

 

(14) 

Here 𝑇𝑠  is considered as a homogeneous temperature of air. Since 𝑞𝑠  is rarely 

measured, it is usually taken as the air specific humidity. However, leaf surface 

specific humidity does not always agree with that of the air because of the stomatal 

openness. The difference can be large in period of water stress when restricted water 

availability from soil may result in stomatal closure and reduce the rates of 

transpiration. A relation between leaf surface specific humidity 𝑞𝑠  and air specific 

humidity 𝑞𝑎 is proposed by the work of Hajji et al. (2017), with the introduction of 

stomatal aperture parameter 𝜂𝑠, which is formulated as: 

 𝑞𝑠 = 𝜂𝑠𝑞𝑎 (15) 

where 0 ≤ 𝜂𝑠 ≤ 1 represents the full range of water supply conditions.  

Water availability for plants can be empirically related to the soil moisture 𝜃 in the 

root zone and the formulation of stomatal conductance 𝜂𝑠  is given by Wang and 

Leuning (1998, equation (7)) which is similar to that of Gollan et al. (1986). The 

empirical function is expressed as:  

 
𝜂𝑠(𝜃) = min (1,

10(𝜃 − 𝜃min)

3(𝜃max − 𝜃min)
) 

 

(16) 

where  𝜃max and 𝜃min are soil water content in root zone at field capacity and wilting 

point respectively, which can be estimated from soil characteristics. In addition to 

this, by taking the 99
th

 and 1
st
 percentile of the long-term soil moisture observations, 

𝜃max and 𝜃min can also be acquired when soil type is unknown (Zotarelli et al., 2010; 
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Hajji, 2017).  

3) Vegetation Index 

Chlorophyll in plant leaves preferentially absorbs solar radiation in the 

photosynthetically active spectrum, which is in the red portion, and strongly reflects 

the near-infrared to avert overheating (Myneni, 1995). Therefore, the evolution of 

green vegetation cover at the catchment scale can be measured by analyzing the 

reflection spectrum of solar radiation. As a product of satellite remote sensing, the 

Normalized Difference Vegetation Index (NDVI) indicates the chlorophyll activity 

and is defined as follow: 

 
NDVI =

𝐼𝑅 − 𝑅

𝐼𝑅 + 𝑅
 

 

(17) 

where IR and R stand for the spectral reflectance measurements acquired in near-

infrared and red regions, respectively. The NDVI-based research has been widely 

investigated in earth science (e.g., Pontailler, 2003; Bhatt et al., 2010). Wittich and 

Hansing (1995) gave the vegetative cover fraction based on NDVI data: 

 
𝑓𝑣𝑒𝑔 =

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

 
 

(18) 

where 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 and 𝑁𝐷𝑉𝐼𝑚𝑖𝑛 represent the exuberant vegetation (approximately 0.8) 

and the bare soil (around 0.1 or less).   

The ET process is the combination of the evaporation from bare soil and the 

transpiration from vegetation. With the introduction of vegetation index 𝑓𝑣𝑒𝑔 which 

indicates the scale of vegetation for a certain land surface, we can finally obtain the 

ET formula as: 

 𝐸𝑇 = (1 − 𝑓𝑣𝑒𝑔)𝐸𝑣 + 𝑓𝑣𝑒𝑔𝑇𝑟 (19) 

 where  𝐸𝑣 and 𝑇𝑟 are given in equation (11) and (14). 

2. Estimation of specific humidity from the Clausius-Clapeyron equation 

Firstly, we start from specific humidity 𝑞 (𝑘𝑔𝑘𝑔−1) and it is defined as the mass of 

water vapor in a unit mass of moist air. 

𝑞 ≡
𝑚𝑤𝑎𝑡𝑒𝑟

𝑚𝑤𝑎𝑡𝑒𝑟 +𝑚𝑎𝑖𝑟
=

𝑤

𝑤 + 1
≈ 𝑤 

where 𝑚𝑤𝑎𝑡𝑒𝑟 is the mass of water vapor (𝑘𝑔), 𝑚𝑎𝑖𝑟 the mass of moist air (𝑘𝑔), 𝑤 the 

mass ratio of water vapor and moist air.  

Relative humidity 𝑅𝐻 (%) is the present amount of water in the air compared to the 

greatest amount it would be possible for the air to hold at the present temperature. 

Thus, it can be expressed as the ratio of the present specific humidity and the 

saturated specific humidity. 

{
 
 

 
 𝑅𝐻 =

𝑞

𝑞𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒
× 100 ≈

𝑤

𝑤𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒
× 100

𝑤𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒 ≡
𝑚𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒

𝑚𝑎𝑖𝑟
=

𝑒𝑠 𝑅𝑣⁄

(𝑝 − 𝑒𝑠) 𝑅𝑑⁄
≈ 0.622

𝑒𝑠
𝑝

 

 



- 45 - 

 

where 𝑒𝑠 is the saturation vapor pressure (𝑃𝑎), 𝑝 the moist air pressure (𝑃𝑎), 𝑅𝑣 the 

specific gas constant for water vapor (𝐽𝑘𝑔−1𝐾−1), 𝑅𝑑 the specific gas constant for dry 

air (𝐽𝑘𝑔−1𝐾−1). 

From the Clausius-Clapeyron equation, saturation vapor pressure can be estimated as 

follow: 

𝑒𝑠(𝑇) = 𝑒𝑠0𝑒
𝜆
𝑅𝑣
(
1
𝑇0
−
1
𝑇
)
≈ 611𝑒

17.67(𝑇−𝑇0)
𝑇−29.65  

where 𝜆  is the latent heat of vaporization liquid water ( 𝐽𝑘𝑔−1 ), 𝑇0  the reference 

temperature (typically 273.16 K) and 𝑇 the temperature (𝐾). 

Once the relative humidity 𝑅𝐻 and the temperature 𝑇 is known, the specific humidity 

𝑞 can therefore be obtained. 

𝑞 ≈ 𝑤 =
𝑅𝐻

100
𝑤𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒 ≈

𝑅𝐻𝑒
17.67(𝑇−𝑇0)
𝑇−29.65

0.263𝑃
 

 

3. Penman-Monteith potential evapotranspiration 

The potential evapotranspiration produced from Penman-Monteith formula (Monteith, 

1965) approximates the atmospheric demand for water from a saturated surface, 

mainly considering these meteorological parameters as temperature, wind speed, 

specific humidity and solar radiation.  

{
  
 

  
 
𝐸𝑇 =

∆𝑅𝑛 + 𝜌𝑎𝐶𝑝𝛿
1
𝑟𝑎

(∆ + 𝛾 (1 +
𝑟𝑠
𝑟𝑎
))𝐿𝑣

∆=
4098(0.618𝑒

17.27𝑇
𝑇+237.3)

(𝑇 + 237.3)2

 

where 𝐸𝑇 is the water volume from evapotranspiration (𝑚𝑚𝑠−1), 𝑇 the temperature 

(°𝐶), 𝐿𝑣  the volumetric latent heat of vaporization (~ 2543𝑀𝐽𝑚−3), ∆ the rate of 

change of saturation specific humidity with air temperature (𝑃𝑎°𝐶−1), 𝑅𝑛  the net 

radiation (𝑊𝑚−2), 𝐶𝑝 the specific heat capacity of air (𝐽𝑘𝑔−1°𝐶−1), 𝜌𝑎 dry air density 

(𝑘𝑔𝑚−3 ), 𝛿  the vapor pressure deficit (𝑃𝑎 ) which is the difference between the 

saturated vapor pressure and the actual vapor pressure, 𝑟𝑎 the aerodynamic resistance 

( 𝑠𝑚−1 ), 𝑟𝑠  the resistance to flux from a vegetation canopy ( 𝑠𝑚−1 ) and 𝛾  the 

psychrometric constant (~ 66 𝑃𝑎°𝐶−1).  

The saturated vapor pressure 𝑒𝑠 (𝑃𝑎) can be estimated from Tetens formula (1930) as 

follow.  

𝑒𝑠 = 0.618𝑒
17.27𝑇
𝑇+237.3 

And the actual vapor pressure 𝑒𝑎 (𝑃𝑎) can be derived from 𝑞𝑠 (𝑘𝑔𝑘𝑔
−1) the current 

specific humidity and 𝑃𝑎𝑡𝑚 (𝑘𝑃𝑎) the atmospheric pressure. 
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{
 
 

 
 
𝑃𝑎𝑡𝑚 = 101.325 (

288 − 0.0065𝑧

288
)
5.255

𝑒𝑎 =
𝑃𝑎𝑡𝑚𝑞𝑠

𝜀 + (1 − 𝜀)𝑞𝑠

 

where 𝜀 is the ratio of the molecular weights  between air and water (~0.622).  

The aerodynamic resistance 𝑟𝑎 here is calculated as the reciprocal of wind speed at the 

2 𝑚 height while the local surface resistance 𝑟𝑠 is parameterized to 70 (𝑠𝑚−1).  

4. Interception process and the production store evolution in GR4H model 

 

Interception: determination of net PET and net P 

𝑖𝑓 𝑃 ≥ 𝐸, 𝑃𝑛 = 𝑃 − 𝐸 𝑎𝑛𝑑 𝐸𝑛 = 0 

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑃𝑛 = 0 𝑎𝑛𝑑 𝐸𝑛 = 𝐸 − 𝑃 
Production Store: soil moisture accounting 

𝑖𝑓 𝑃𝑛 > 0, 𝑟𝑎𝑖𝑛 𝑓𝑖𝑙𝑙𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑜𝑟𝑒 

𝑃𝑠 =

𝑥1 (1 − (
𝑆
𝑥1
)
2

) 𝑡𝑎𝑛ℎ (
𝑃𝑛
𝑥1
)

1 +
𝑆
𝑥1
𝑡𝑎𝑛ℎ (

𝑃𝑛
𝑥1
)

 

𝑖𝑓 𝐸𝑛 > 0, 𝐴𝐸𝑇 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑜𝑟𝑒 

𝐸𝑠 =
𝑆 (2 −

𝑆
𝑥1
) 𝑡𝑎𝑛ℎ (

𝐸𝑛
𝑥1
)

1 + (1 −
𝑆
𝑥1
) 𝑡𝑎𝑛ℎ (

𝐸𝑛
𝑥1
)
 

Water content changes: 

𝑆 = 𝑆 − 𝐸𝑠 + 𝑃𝑠 
Percolation leakage:  

𝑃𝑒𝑟𝑐 = 𝑆 {1 − [1 + (
4

9

𝑆

𝑥1
)]
−1/4

} 

Water content updates: 

𝑆 = 𝑆 − 𝑃𝑒𝑟𝑐 
Figure 5a: The diagram of GR4H model 

(Source: Perrin et al., 2003 in page 3). 

 


