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Résumé 

Les hydrologues ont depuis longtemps l'ambition de produire des modèles qui ne nécessitent 

pas de calage sur les débits observés. Et pourtant, tous les modèles existants à ce jour 

nécessitent cette opération, et leur application à des basins non-jaugés dépend donc de la mise 

en place de procédures de régionalisation, qui identifient des basins versants jaugés dont les 

données peuvent être utilisés en substitution des chroniques de débit manquantes. 

Les méthodes de régionalisation constituent donc un sujet d'intérêt récurrent dans les études 

hydrologiques, en particulier depuis le lancement de l'initiative PUB de part de l'AISH 

(Sivapalan et al., 2003). Cependant, l'évaluation des points de force et de faiblesse des 

différentes approches jusqu'ici proposées est encore difficile, à cause de la rareté d'études 

comparatives de grande échelle. Le principal objectif de cette thèse est de contribuer à une 

telle évaluation au travers de la comparaison des performances d'approches classiques et 

nouvelles sur un grand échantillon composé par 800 bassins versants Français. La thèse 

poursuit aussi la généralisation de ses résultats par biais d'un test de robustesse étudié ad-hoc, 

qui reproduit la situation de pays ayant un réseau de jaugeage moins spatialement dense. 

L'analyse menée par la thèse se développe en trois parties : 

� une première partie dédiée à la régionalisation des statistiques sur le débit, utilisées à la 

fois comme cas d'étude simple pour tester l'utilisation complémentaire de donnés 

spatiales et physiographiques en régionalisation, et comme première étape nécessaire 

pour la mise en place d'une régionalisation "indirecte" des modèles pluie-débit ; 

� une deuxième partie dédiée à la traditionnelle régionalisation "directe" des modèles 

pluie-débit, basée sur les critères de proximité spatiale, similarité physique, ou sur une 

combinaison des deux ; 

� une troisième partie proposant un nouveau schéma de régionalisation dite "indirecte", qui 

se base sur la régionalisation des statistiques de débit déjà effectuée. Ce type de méthode 

a été proposé par plusieurs auteurs dans les dernières années, mais à notre connaissance il 

n'a jamais été comparé directement aux méthodes "directes". 

La thèse identifie la sélection de descripteurs physiographiques significatifs comme l'étape la 

plus importante pour la performance des méthodes "directes" de similarité physique, et 

montre aussi que ces approches restent plus performantes face à la nouvelle méthode dite 

"indirecte", même en utilisant un critère d’évaluation a priori favorable à la deuxième. Cette 

dernière pose à notre avis encore un certain nombre de questions d'ordre méthodologique à 

résoudre avant d'envisager une utilisation dans un contexte opérationnel. 
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Abstract 

Despite a long-standing ambition to produce a model that does not require calibration against 

observed runoff data, all current hydrological models require this step: their application on 

ungauged basins is therefore only possible by means of regionalization procedures, which 

identify appropriate gauged sites whose data are used in place of the missing runoff record. 

Regionalization procedures are therefore a subject of increasing interest in hydrological 

studies, especially since the start of the IAHS PUB initiative (Sivapalan et al., 2003). 

However, assessing the relative merits of the several regionalization approaches developed so 

far is still difficult, because of the relative lack of large-scale comparative studies. 

The main objective of this thesis is to help such assessment by testing classical and novel 

regionalization approaches on a large dataset of over 800 catchments located in France.  

The thesis also aims at generalizing its results by means of a purposely-built robustness test 

that mimics the situation of more scarcely-gauged nations. 

 

The thesis analysis consists of three main parts: 

� A fist part dedicated to the regionalization of flow statistics, used as an exploratory 

tool to test the complementary use of physiographic and spatial information in the 

regionalization process, and as required step for an "indirect" regionalization of 

rainfall-runoff models. 

� A second part dedicated to classical "direct" regionalization of rainfall-runoff models, 

on the basis of spatial proximity, similarity in catchment attributes, or a combination 

of the two. 

� A third part proposing a novel "indirect" regionalization framework, based on the 

regionalization of flow statistics developed in the first part. This kind of 

regionalization approach has been advocated by several authors in recent years, but to 

our knowledge it had not yet been directly compared to "direct" methods. 

 

The thesis identifies the selection of relevant physiographic descriptors as the most important 

factor affecting the performances of "direct" regionalization methods based on physical 

similarity, showing that such approaches still seem to outperform the novel "indirect" 

framework, even when adopting a performance criterion that can be expected to favor the 

latter. In our opinion, this regionalization approach raises methodological questions that need 

to be answered before being considered in operational contexts. 
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1 Introduction 

Rainfall-runoff models are a key tool in several contemporary water-management 

applications, allowing high- and low-flow forecasting, reconstitution of incomplete flow 

records, correct dimensioning of dams and flood-management structures. 

  

However, despite a long-standing ambition, hydrologists have so far failed at producing a 

hydrological model that does not require any calibration (Sivapalan et al., 2003): every one of 

the currently used hydrological models, regardless of its structure, requires the estimation of 

at least a few parameters in order to realistically reproduce the hydrological behaviour of a 

particular catchment. Even physically-based models require calibration, due for instance to 

the poor representativeness of small-scale descriptors when used as parameters in large-scale 

applications (Bloschl and Sivapalan, 1995). 

Unfortunately, while such calibration can only be performed in the presence of simultaneous 

rainfall and runoff records of sufficient length, flow measurements required are often not 

available at the site(s) of interest, and in most cases installing a new gauging station is not a 

realistic option, because of the time and cost required to obtain a meaningful record.   

 

As a consequence, hydrologists often face the challenge of making predictions in an 

ungauged situation: since the parameters of the current rainfall-runoff models cannot be 

estimated directly from the catchments' measurable characteristics, parameterising a model 

for an ungauged basin implies a transfer of information from one or several gauged 

catchments (often called donors) to the ungauged one (called the receiver). Over the years, a 

number of techniques have tried to operate such a transfer, all of which are either based on 

physiographic and climatic catchment descriptors, or on the geographical position of the 

donor and receiver catchments, or on both. As most of these regionalization approaches use 

such information to identify donor catchments that are physically and climatically similar 

and/or spatially close to the receiver, they often go under the names of “physical similarity” 

(see for isntance: Acreman and Sinclair, 1986; Burn and Boorman, 1993) and “spatial 

proximity” (Egbuniwe and Todd, 1976). 

 

Regionalization methods relying heavily on spatial proximity are often seen as having less 

desirable properties than the ones based solely on physical similarity, for essentially two 

reasons. On one side, spatial proximity does not provide useful information about the link 



 

 - 8 -  

between model parameters, dominant hydrological processes, and a catchment’s physical and 

climatic properties, while physical similarity allows for a qualitative interpretation. On the 

other side, an approach driven by spatial proximity clearly requires “close enough” gauging 

stations, while one would naively hope that physical similarity allows one to identify proper 

donor catchments even if they are very far from the studied ungauged catchment. 

Yet, when considering the relative performance of the two approaches, spatial-proximity 

methods often perform “disappointingly well”, and there seems to be a degree of 

complementarity between the two approaches (Oudin et al., 2008): if one could know in 

advance which of the two would work best on each studied ungauged basin, the performance 

of such an hybrid method would greatly overcome the ones of its components. 

 

This thesis is the consequence of the above considerations and has two main objectives: 

(i) To explore the complementary use of physiographic/climatic and geographical 

information in the context of regionalization, under the assumption that while a 

method that privileges the former is more desirable, the latter can greatly improve the 

regionalization's accuracy in some circumstances; 

(ii)  To address the relative strengths and weaknesses of the tested regionalization 

approaches on a rich and quite diverse dataset, and evaluating their robustness, 

especially in regard of the need for spatially-close gauging station (high spatial 

density of the gauging network). 

 

The first part of this thesis outlines the common background shared by the two main parts of 

the thesis, consisting in the state-of the art of regionalization studies (literature review), a 

description of the database used in this study, and a description of a few key methodological 

points, that essentially regard the techniques used for the evaluation of the regionalization 

approaches tested throughout the thesis. A special attention is given to the identification of 

benchmark comparisons and of robustness testing. 

 

The second part of this thesis treats the regionalization of flow statistic, which we chose to 

deal with  before rainfall-runoff models for the following reasons: 

(i) Evaluating the relative role of physiographic information and of spatial proximity on 

hydrological variables that are less affected by the choice of a model structure and by the 

inevitable issue of parameter identifiability / interdependence. In a way, the 

regionalization of flow statistics approaches the “ideal case” of a conceptual model 
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whose parameters show perfectly identifiable optimal values, which are in most cases 

significantly (yet not perfectly) correlated to measurable catchment’s attributes. 

(ii)  As a pre-requisite for the “indirect regionalization” presented in the fourth part of the 

manuscript 

The approach used involved a two-step combination of regressions between statistics and 

catchment characteristics, followed by a spatial interpolation of the residuals, that can be 

refined in order to acknowledge nested donor and receiver catchments, and big differences in 

catchment size. 

 

The third part of this thesis deals with what is, in recent years, probably the most common 

regionalization approach for conceptual, lumped rainfall-runoff models: the transfer of 

parameter sets to an ungauged catchment from one or more gauged catchments that are 

thought to be hydrologically similar to the former. The fundamental element of such 

approaches is a similarity metric, built on a combination of measurable catchment attributes, 

so that two catchments showing similar attributes will be considered to have potentially 

similar hydrological behaviours.  

Such attributes can describe physiographic and climatic properties of a catchment, or even its 

geographical position (but as the objective of a regionalization procedure is to deal with 

scarcerly-gauged regions, a common objective of regionalization studies is to reduce as much 

as possible the role of the latter in the similarity metric). 

In this thesis work, we proceed in a similar fashion with what is done with flow statistics, by 

trying to get the best possible results out of the available physiographic and climatic 

information in the first place, and using spatial proximity in a complementary way in a 

second one. 

 

The fourth part of this thesis deals with what we call "indirect" regionalization methods, as 

they are based on the previous regionalization of flow statistics. Once their values have been 

calculated for a given ungauged catchment, rainfall-runoff parameter sets for the same basin 

are chosen on the basis of their ability to produce a simulated streamflow record that is 

consistent with those statistics. These methods can be attractive as the first-step 

regionalization they are based on has more desirable properties than the direct regionalization 

of parameter sets, but as we will see, on another side the construction of a statistic-based 

constraint that produces desirable simulations is not trivial.  
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The last part of this manuscript features a published article on the issue of outlier 

identification and treatment in the context of a two-step regionalization of flow statistics, as 

the one showed in the second part. 
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Part 1 – Methods, databases and literature 

 

 

 

 

 

In this part, we provide the context and common background shared by all parts of this thesis, 

in terms of methodological approach, available data, and placement relative to the existing 

literature on the topic of regionalization: 

� Chapter 2 describes the databases used in this thesis; 

� Chapter 3 discusses the methodological aspects relevant to the evaluation of the 

alternative approaches proposed in the thesis to address the ungaged catchment issue; 

� Chapter 4 presents a detailed review of the literature on the regionalization issue.
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2 Databases used in this thesis 

 

 

 

 

 

In this chapter, we present the datasets on which our work is based. 

We start with a short justification of our use of a large catchment dataset. Then, we present 

this dataset; we have a look at the relationship between catchment characterization and 

physiographic and climatic descriptors, and finish with some synthetic descriptors. 
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2.1 Why should we use a large set of catchments? 

In this study, a data set of 865 French catchments was used. The catchments are spread over 

France and are subject to a variety of climatic conditions (oceanic, Mediterranean, 

continental). What is the interest of using such a large dataset in a regionalization study? 

The first reason is that a large dataset gives a certain guarantee of diversity. A dataset 

including catchments of several different hydrological, physiographic and climatic flavours 

should ensure that all the results of the study can be considered relevant to the general issues 

that are shared by every regionalization application, and less affected by local specificities. 

On this point, we notice that our dataset is still far from the "ideal" case, which would be a 

dataset including many catchments from all over the world, and that our results will be 

inevitably specific to France. 

The second reason is that the impact on regionalization of relatively rare occurrences such as 

catchments that have some (hydrological) reason to be considered as outliers and hidden data 

errors is put in better perspective when considering a larger dataset: smaller ones could be 

"lucky cases" that do not present such imperfection, or on the contrary be greatly affected by 

a single "bad" catchment. 

2.2 How our dataset was made 

The selection of catchments was made based on three criteria:  

(i) absence of regulation,  

(ii)  availability of continuous rainfall and streamflow records over a twenty year 

period (1986-2005),  

(iii)  amount of missing values in the streamflow record less than 20%. 

Table 1 presents the main characteristics of the data set in terms of catchment area, 

precipitation, potential evapotranspiration (PE) and streamflow. 

Table 1: Essential characteristics of the 865 catchment data set 

 Min 0.2 
Quantile 

0.5 
Quantile 

0.8 
Quantile 

Max 

Area (km²) 2 73 208 828 112990 
Mean annual 
precipitation, P 
(mm/year) 

547 818 968 1233 2144 

Mean annual 
runoff, Q (mm/year) 

14 202 327 595 6500 

Mean annual PE 
(mm/year) 

304 631 670 727 892 
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2.3 How can we characterize a catchment? 

Ideally, physiographic descriptors should be able to represent in a balanced and 

comprehensive way the main hydrologically relevant traits of a catchment, namely: 

� the catchment’s climate ;  

� its topographic characteristics, such as elevation, area, land use ; 

� its lithological and soil characteristics. 

 

Unfortunately this ideal cannot always be fully realized.  

Indeed, while topographic and climatic descriptors are widely available, the situation is much 

more difficult for lithology and soil type/properties: currently available descriptors either 

seem not to be entirely relevant to the hydrological processes, or to be potentially very useful, 

but not measurable at the relevant scale (full-catchment, for a lumped model), nor easily re-

scaled. 

So far, only one attempt of using soil information seems to have given successful results: this 

is the case of BFIHOST (Boorman et al., 1995), a British index of low-flow catchment 

behaviour that is derived directly from soil maps, with a rather complex procedure. Note, 

however, that while this descriptor has proven to be quite successful on the catchments for 

which it has been developed, it does not seem to work nearly as well on a different dataset, as 

shown by Oudin et al.(2010) and by Schneider et al.(2007), probably due to inconsistencies 

regarding the type of catchments considered: in this regard Schneider et al.(2007) noticed that 

BFIHOST seems to have a much better predictive value on northern Europe catchment than 

on southern (and especially Mediterranean) ones. 

However, some topographic descriptors seem to be at least indirectly linked to hydrological 

soil/lithology properties: drainage density (expressed as size of source areas) is one of them 

(Le Moine, 2008). 

 

We have just mentioned that catchment descriptors should be measured at full-catchment 

scale for a lumped model, implying that the relevant scale for a distributed one is finer. These 

trivial observations, as well as the interesting story of BFIHOST’s successes and failures, are 

particular cases of a more general principle, linked with the empirical approach followed in 

regionalization studies (Sawicz et al., 2011). 

This principle says, in our opinion, that the hydrological relevancy of a catchment descriptor 

is always relative to a specific hydrological application, that is defined by the kind of model 

used (structure, time step), the scope of the application (as expressed by the efficiency 



 

 - 16 -  

criteria, or by the targeted flow statistics), the kind of catchments considered, and the 

interactions and correlations with other available descriptors. 

Of course, some descriptor choices can give consistent results for several different 

applications, and identifying such a descriptor list is a reasonable (although ambitious) 

objective, until the consistency is not expected to be perfect and hydrologists do not mistake 

relative truths for absolute ones. 

 

Last but not least, it is crucial to remember that measurable descriptors show, in most cases, 

only the façade of a catchment’s structure and functioning, and that two catchments that 

“look” similar can’t be expected to behave similarly in a crude, mechanistic way. Our best 

efforts should be expected to produce a situation where two apparently similar catchments are 

likely to have a similar behaviour, but this success should not mislead us: failures will still 

exist and should not be systematically seen as the consequence of “outliers” or data errors. 

In hydrological investigations, well chosen catchment descriptors can provide very strong 

clues, but cannot be taken as conclusive evidence. 

Les us have a look at which descriptors were available for the physiographic and climatic 

characterization of our catchments (Table 2).  

Table 2: List of catchment descriptors available for this study 

  Descriptor Description 
1 T Average temperature (°C) 

2 W Average wind speed (m/s) 

3 Hum Average specific humidity (g/kg) 

4 A Area (km²) 

5 Zmin Minimum altitude (m) 

6 Zave Average altitude (m) 

7 Zmax Maximum altitude (m) 

8 Z0.n, n=1,..9 Altitude distribution quantiles 

9 Smin Minimum slope 

10 Save Average Slope 

11 Smax Maximum Slope 

12 S0.n Slope distribution quantiles 

13 URBAN % of surface occupied by Corine land cover classes 111-124 

14 AGRIC. % of surface occupied by Corine land cover classes 211-213 

15 FRUIT % of surface occupied by Corine land cover classes 221-223 

16 HYBRID % of surface occupied by Corine land cover classes 111-124 

17 FOREST  % of surface occupied by Corine land cover classes 241-244 

18 OTHER %  occupied by remaining Corine land cover classes  

19 DD Drainage Density, expressed in average source area size (km²) 
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Drainage Density is calculated here as the geometric mean of a catchment's source areas' size. 

See Le Moine (2008) for more details. 

 

Table 3 shows the cross-correlations between most of our descriptors (the quantiles of 

altitude and slope have been excluded from this table for sake of brevity). Some descriptors 

show very strong correlation, such as heights and slopes, forest and agricultural coverage, 

temperature and specific humidity.  

Most of the strongest correlations (more than 0.5), are in our opinion the symptom of the 

catchment types encountered in our dataset, which seem to belong to a continuum between 

two extremes: on one side, mountain catchments which tend to be steeper, more forested, 

colder and rainier, while on the other side lowland catchments tend to be flat, less rainy, with 

agricultural fields instead of forests. As a result, climate variables, altitude, slope, forest and 

agricultural land cover appear to be strongly dependent on each other. 

Temperature and humidity are also strongly correlated, which isn’t a surprise since the latter 

is expressed as absolute moisture content, rather than relative.  

Finally, a few descriptors do not show strong correlations with other catchment 

characteristics: it is the case of some land use classes (which are probably less represented in 

our dataset) minimal slope and catchment area. The later is quite reassuring since it means 

that for each catchment size several catchment types are represented, and viceversa.  

 

Since in the applications described later in this thesis we choose to use appropriate techniques 

to select the relevant descriptors, choosing which descriptor should be kept in the strongly 

correlated pairs or groups is not necessary. 
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Table 3: Matrix of correlations between descriptors (p<0.05 significance in bold characters) 
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2.4 Distribution of a few key descriptors and flow characteristics over our dataset 

In this chapter we will look at the shape of the distribution of some of our descriptors. The 

scope of this analysis is on one side to provide an idea of the diversity of the data set, and on 

the other to serve as a diagnostic tool prior to the definition of a similarity metric between 

catchments. 

Figure 1 shows the distribution densities of six among the most relevant physiographic and 

climatic descriptors. It can be seen that the distribution shapes are fairly close to normal – 

with the exclusion of a few extreme values – apart from Area and Drainage Density, which 

seem to be log-normally distributed. 

Figure 2 shows the distributions of five flow characteristics: average annual runoff (Q), three 

flow quantiles (Q90, Q50, Q10, where Q90 is the daily runoff that is surpassed on 10% of 

observed days, Q50 is the median flow, Q10 is the daily runoff surpassed on 90% of the 

observed days) and Base Flow Index (fraction of "base" runoff over total runoff. The base 

flow separation has been made by a graphical method linking hydrographs' 5-day minima 

values). These chart emphasize the diversity of our dataset: from rather dry to very wet 

catchments, from very unresponsive to very responsive. 
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Figure 1: Distribution densities of six physiographic distributors, compared with normal 
distributions (dashed lines). Note the semi-log scales for Area and Drainage Density (lognormal 
distributions were employed in these two cases) 
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Figure 2: Distributions of five flow characteristics. 
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3 Methodological aspects 

 

 

 

 

 

This chapter will clarify a few key points relative to the methodology followed throughout 

this thesis work, and define the meaning (in the context of this thesis) of often-repeated terms 

and expressions. 

We will discuss successively the jack-knife approach to cross validation, the need for using 

benchmarks in order to interpret our validation results, and the specific way to address the 

notion of robustness in a regionalization perspective. Last, we will discuss the differences 

between donors and receivers, and argue for a different selection procedure for the donor and 

the receiver pool. 
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3.1 General principles of the comparative testing of alternative regionalization 

methods 

3.1.1 Jack-knife approach to cross validation 

In this thesis, as in most regionalization studies, a leave-one-out cross validation method has 

been used to assess the performances of the proposed regionalization procedures. This 

procedure is commonly referred to as "jack-knife" in hydrological studies, and we will also 

do so in this thesis work. Note however that this use of the expression jack-knife could sound 

improper to a statistician, since it usually reserves to the estimation of the variance and bias 

of a statistic (Efron and Gong, 1983), rather than to the evaluation of a predictive model. 

 

In the context of regionalization studies, the method consists of the following steps: 

- Ignoring the gauging data of one catchment in the dataset. We will refer to this 

catchment as pseudo-ungauged, or as receiver; 

- Estimating model parameters or flow statistics for the pseudo-ungauged catchment 

using its physiographical and climatic descriptors plus the complete information that 

we have for the rest of the catchments in the dataset (called donors); 

- Repeating the procedure so that every catchment in the dataset is treated once as 

pseudo-ungauged; 

- Evaluating the efficiency (or the errors) of the flow simulations (or flow statistics) 

estimated in such a way, usually taking an average or median of the efficiencies 

(errors) observed on individual catchments. 

3.1.2 There is no absolute truth in this world: we need benchmarks 

If looked at in an “absolute” way, the performances of most current regionalization 

approaches would probably look rather poor, especially in comparison with the performances 

of a calibrated model1, and the differences between a method and another would look quite 

small. Furthermore, such performances are inherently dependent on the model and on the 

dataset characteristics, among which its spatial density is possibly the most influent:  for this 

reason, we decided to develop a robustness test called “metrological desert” which consist in 

artificially reducing the dataset’s density (see section 3.3 for a full discussion of this test). 

                                                 

1 Notice that in this thesis work, for sake of simplicity, we did not use a split-sample calibration/validation approach: therefore, the 
calibrated parameter set will yield the model’s best possible performances on the time series considered. 
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Following these two considerations, we think that a “relative” evaluation of regionalization 

performances is more meaningful than an “absolute” one. We then propose to evaluate the 

performance of regionalization methods in a relative way, with the help of benchmark 

comparisons. Such benchmarks should give an example of minimum and maximum, and 

“acceptable” expected performances, and should be kept equal when switching from a 

regionalization method to another. 

3.1.3 Specificities of different models: how the regionalization exercise differs for a 

statistical and for a rainfall-runoff model 

This thesis covers both the regionalization of flow statistics, and the regionalization of 

rainfall-runoff models. Though the two exercises share many commonalities (they can even 

be combined as shown in section 10), they differ on at least one crucial point: while flow 

statistics generally show significant correlations with physiographic and especially climatic 

descriptors, this is seldom the case for calibrated model parameters, which should ideally be 

climate-independent. As a consequence, regressions between physiographic and climatic 

descriptors and streamflow statistics tend to show at least acceptable results and can be used 

as the founding element of a regionalization approach (even if we should be aware that this is 

mostly due to the fact that flow statistics are strongly dependent on the climatic forcings).  

On the other hand, as covered in paragraph 4.4.1, regression-like relationships tend to fail 

when applied to model parameters, even when sophisticated calibration techniques are used 

in order to obtain more physically-correlated parameter sets: the most successful 

regionalization approaches for rainfall-runoff models are generally based on data-transfer 

methods. 

Another peculiarity of rainfall-runoff models is that there is a degree of interaction and 

interdependence between the values of different parameters. This is probably the reason why, 

when using the information of several donor catchments, linear combination of model 

parameters does not seem to be the best choice: methods based on model output averaging, as 

outlined by McIntyre et al. (2005), seem advantageous. In this case, a simulation is run for 

each of the donor catchments, using the donors's parameter set and the pseudo-ungauged 

rainfall record. The pseudo-ungauged simulated streamflow record will then be a linear 

combination of those simulations.  

It is worth noting that there might be a secondary reason why output-averaging gives good 

results: the most common performance criteria are based around the RMSE and are usually 

more forgiving for conservative, smoother-than-necessary simulations than for simulations 

which look more "realistic" when not compared with the measured runoff record, at the cost 
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of taking more risks. Averaging several slightly different simulations goes exactly in the 

direction of a conservative/smooth prediction. 

 

3.2 Catchment selection: differential approach for the donor and the receiver pool 

An important methodological issue in regionalization studies is the selection of the 

catchments on which to test the proposed procedures. Here, we discuss the options, and argue 

that the best choice is probably a differential approach for the selection of "receivers" 

(catchments that should be treated as ungauged during a regionalization test) and "donors" 

(gauged catchments whose data is transferred to the receivers). 

 

� Receivers: Ideally, we should use as many "receivers" as possible, setting only 

reasonable demands about the accepted amount of human influences and the amount of 

available data (streamflow and precipitation records' length and completeness, available 

catchment descriptors). The objective of a broad selection of receivers is to be able to 

test regionalization methods on a large and diverse dataset, in order to (hopefully) ensure 

that the observed results will be as general as possible, and not specific to a given 

catchment type. 

 

� Donors: On the other hand, there should be no particular limit on donor selection. Most 

regionalization methods include some kind of donor selection, and in many cases the 

regionalization exercise is limited to the identification of a few catchments that show 

some similarities with the receiver, under the assumption that they are correlated to 

hydrological similarities. Depending on the regionalization application, it is possible to 

black-list some catchments (never use them as donors) (see paragraphs 6.2 and 6.4). 

 

However, in any case, we insist on the fact that excluding a catchment from the list of 

potential donors should never lead to its exclusion from the list of receivers. The constitution 

of the list of receivers should be independent from all regionalization considerations, if the 

evaluation of the method is to remain sound. Even if a catchment was found so peculiar that it 

would not look like any other catchment in the dataset, it should not be excluded from the 

receiver dataset. 
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3.3 Further methodological requirements to assess the robustness of a 

regionalization method 

3.3.1 Why this question makes sense? 

One of the essential characteristics of our dataset is its spatial density. Of course, there is no 

point in complaining about it, since it offers larger opportunities for testing regionalization 

methods. But we should still be careful, since we do not want our results to be specific to a 

high hydrologic density environment. As we show it in Figure 3 below, most of the 

catchments in our test set have a neighbor catchment closer than 25 km. In half of the cases, 

this distance is less than 10 km. 

Such a strong spatial density of available gauging stations makes pure spatial proximity 

perform really well for practically any hydrological application on ungauged catchments: 

indeed it is usually the case that regionalization studies built on a dense gauging network find 

spatial proximity to be a very good regionalization criterion, and in some cases superior to 

site-similarity (see e.g.Merz and Blöschl, 2005). But in a real world application, we may deal 

with catchments for which the closest gauge is further away, and anyway, the spatial density 

of gauging networks may be different in other countries. 

 

Figure 3: Distribution of the distance of the closest neighbouring catchments over our dataset 
(distance calculated between catchments' centroids) 
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An analogous reasoning can be made if we consider catchment’s characteristics instead of 

their positions: having nearly 800 catchments on a relatively small territory means that for 

each catchment it should be possible to find some very similar donors. 

 

One of the ambitions of this work is to identify regionalization methods that perform well on 

the majority of our catchments, but also in those few cases where a very close gauged 

catchment, or a very similar one, are not available. Furthermore, we would like to evaluate 

how such methods could potentially apply on different datasets, including less-dense ones. 

For this reason, we need to go beyond the standard testing of regionalization method and 

imagine a more requiring test, a true "crash test" that will challenge the robustness of the 

tested regionalization methods to the lack of close and of similar donor catchments. 

 

In the the next paragraph we will introduce a test for the sensitivity of regionalization 

methods to the lack of close neighbours. A procedure called “metrological desert” has been 

developed, whose results, and extension to the lack of similar catchments, will be discussed 

in chapter 9 

3.3.2 Assessing the impact of the density of neighbors: metrological desert generation vs 

random network reduction  

In order to build a hydrological "crash test" focusing on the gauging network's density, we 

must simulate a reduction of the density of our dataset by ignoring some stations. The most 

intuitive (and also most elegant) method of achieving such an artificially-reduced dataset is to 

remove from the list of donors a certain number of stations, chosen randomly. As a result, if 

one looked at the position of these catchments on a map, the reduced dataset would show 

more or less evenly distributed gauging stations.  

 

However, if we look at our dataset in Figure 4, one can see we face a slightly different 

challenge: regions where practically every next catchment is gauged and useful for 

regionalization purposes (not too many human influences) are interrupted by what we called 

"metrological deserts", i.e. regions where for a number of reasons (mountain regions, flat 

regions having a mostly artificial river network) the density of the gauging stations is much 

lower. If we consider an ungauged catchment in one of such metrological deserts, and the 

distance of the available gauged catchments, we should expect a "threshold" situation: up to a 

certain distance, there is no gauging station, but just a little further away we might have a 

very "hydrologically rich" region. 
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In order to better reproduce such a situation, we developed a different kind of robustness test, 

which we called "metrological desert", and that will be used extensively in this thesis work. 

In this case, instead of choosing what percentage of catchments are to be removed from the 

donors list, we set the desert's radius: when considering a catchment as ungauged, we will 

ignore all potential donor (gauged) catchments whose centroid is closer than the desert radius. 

 

 

Figure 4: The catchments of our dataset are presented. Red-circled catchments do not have a 
neighboring basin closer than 20 km 

 

The qualitative difference between the two methods should be clearer by looking at Figure 5: 

in both examples the same field of ungauged and gauged catchments is considered and the 

same number of stations is discarded. In the case of the random density reduction we might 

still have "close" donors, while in the metrological desert case we might still have many 

donors but none of them will be "close" to the ungauged we are working on. 
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Figure 5: Random density reduction (left) VS metrological desert generation (right). Blue 
represents the ungauged catchment, beige the authorized donor catchments, red the discarded 
donor catchments. In both examples, 20 donors have been discarded. 

 

The two methods also differ in how strongly they affect regionalization performance and 

Figure 6 illustrates this point better. The same model has been regionalized with a similarity-

based technique, on a dataset whose density has been reduced randomly in the first case, and 

with a “desert” approach in the second. It quite clear that the "metrological desert" situation is 

more challenging than a random network density reduction, even if the number of discarded 

catchments is much lower (with a 200 km radius, less than 30% of the catchments are 

discarded). The reason for such behaviour is that, as we discussed in section 4.5.4, similarity 

metrics and spatial proximity are linked, so that by excluding the closest donors, we are also 

excluding many of the most similar ones. 
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a)  

b)  

Figure 6: Impact of a progressive reduction of the number of donor catchments on the efficiency 
of a regionalization exercise (here showed: the median efficiency of a regionalized RR model). a- 
random reduction of the density of donors, b- creation of a metrological desert.  

 

Finally, when considering the computing time and consistency of the two methods, random 

density reduction has a disadvantage that led us to discard it. When randomly eliminating 

donor catchments, it is important to be aware of that the results might differ according to how 

the random number generation algorithm that drives the test is initialized. To eliminate this 

issue and achieve a representative result, one should perform several realizations of the same 
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procedure and consider an average or median result. Such undesirable behaviour is 

particularly emphasized when trying to achieve very low network densities: the number of 

different realizations required to converge to a "stable" result might be quite high. The 

"metrological desert" being a worst-case scenario that doesn't rely on a random procedure, 

does not present this problem.  

The main drawback of the metrological desert test, as applied in this work, is its “one size fits 

all” character: our dataset inevitably has regions of higher hydrological diversity across space 

(where the test should degrade performances more quickly) and more homogeneous ones 

(where we might expect a more robust regionalization). 

 

 

 

3.4 Synthesis of the methodological choices 

In this paragraph we would like to quickly summarize our methodological choices for the rest 

of the thesis. 

� The evaluation of regionalization performances will be done with a jackknife (leave-

one-out) cross-validation technique, as outlined in paragraph 3.1.1 

� Our performance criteria will be R2 and RMSE for the regionalization of flow 

statistics, and C2M, a bounded version of the Nash and Sutcliffe efficiency, for 

rainfall-runoff simulations (see paragraph 7.1.1) 

� We will evaluate the robustness in data-sparse situations with the metrological desert 

test  

� The catchment considered as ungauged will be also referred to as receiver, while the 

catchment whose information is used instead of the missing streamflow record will be 

called donors 

� The models used will be linear or log-transformed regressions for flow statistics, and 

GR4J for rainfall-runoff simulations. 
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4 Literature review on the regionalization of rainfall-runoff 
models 

 

 

 

 

 

This chapter deals with a detailed literature review covering the topic of regionalization. We 

start by defining the ungaged basin, and then propose a structured analysis of available 

literature:  

� Some authors argue that with ungauged basins, the solution lies in "putting more 

physically measurable" parameters in the model in order to reduce the dependency on 

calibration; 

� Other authors consider that the solution lies in finding a posteriori a relationship 

between calibrated parameters and relevant physiographic and climatic descriptors (or 

geographical coordinates); 

� Others prefer to look for "similar" catchments, in order to transfer parameters from 

them; 

� Last, some authors in recent years investigated the potential use of previously made 

regionalization of some flow characteristics to guide them in the choice of model 

parameters. 
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4.1 All agree more or less on a definition for an ungaged basin 

In this thesis, we will consider as “ungaged” a catchment for which we do not have any 

measure of runoff at the site we are interested in, although we have rainfall measurements 

and at least a few physiographic measurements (that can relate to its climatic, topographic, 

land-cover characteristics). We also suppose that, for a number of neighbouring sites, we do 

have runoff records long enough to allow the production of basic statistical analyses and the 

calibration of parsimonious lumped rainfall-runoff hydrological models, in addition to the 

rainfall and physiographic measurements.  

This definition of ungauged catchment is the one shared by most of the existing literature on 

the subject, although it is not the most general one: one could define as “ungaged” any 

catchment for which there is no sufficient data to perform the calibration of a rainfall-rinoff 

model with the usual techniques. Under this general definition, other specific cases can occur: 

we will cite for instance a study by Winsemius et al. (2009) that cover the case of "scarcerly 

gauged river basins, where data is uncertain, intermittent or nonconcomitant" under the name 

of “ungauged”. Rojas Serna (2006) and Seibert and Beven (2009) take a similar point of 

view, considering the case of "almost ungaged catchments", with results agreeing that it can 

be in most cases relatively easy, even with limited resources, to turn an "entirely ungauged" 

catchment into an "almost ungauged", by performing a small number of well-chosen flow 

measurements. 

 

4.2 For a hydrological fundamentalist, there is no special problem with ungaged 

basins… 

If hydrological modelling was a mechanistic science, the distinction between "gauged" and 

"ungauged" catchments would not be of any special interest. Indeed, in such a case, the 

model would so precisely reproduce the relevant processes generating runoff, that all model 

parameters could be directly estimated from field measurements of some physical property of 

the catchment. Runoff records would only have the purpose of model validation, but once 

such a model would have proved to be valid on a large enough set of catchments without 

requiring any form of additional calibration, one would be sure of its transferability to an 

ungauged situation. This situation is ironically described by Richard Silberstein in his 2005 

paper entitled Hydrological models are so good, do we still need data? In this perfect 

mechanistic world, the definition of “ungauged” based on the absence of runoff data would 



 

 - 35 -  

be useless, a new one could be given, based on the absence of the adequate field 

measurements. 

 

We argue that in the present state of the art, an entirely mechanistic model is yet to be seen, 

possibly not because of a wildly inaccurate understanding of the relevant processes, but rather 

because nearly all catchments, outside experimental ones, are “ungauged” when it comes to 

measuring all their hydrologically relevant characteristics at the adequate scale(s). In such a 

situation, all hydrological models need local calibration, and at least in the short term, the 

runoff-based definition of ungauged basin is the most relevant. 

In the following sections, we will review the main approaches that have been proposed to 

cope with ungauged basins. 

 

4.3 With ungauged basins, the solution lies in "putting more physically measurable" 

parameters in the model in order to reduce (suppress?) the dependency on calibration 

The growing availability of GIS-related information has driven several attempts of building 

“physically-based”, spatially-distributed modelling, with the inherent hope that these data 

could be the foundation for a truly deterministic model whose parameters could thus be 

directly extrapolated from maps of physiographic descriptors, without the need for calibration 

against runoff.  

Such a model would ideally be the most desirable for ungauged applications, but 

unfortunately current distributed, physically-based models still seem to require some form of 

calibration against streamflow data. As exemplified by Liu and Todini (2002) and Velez et al. 

(2009) parameter maps are usually re-adjusted after being initially set at the values obtainable 

from the descriptors maps. This readjustement is often done by means of “correction factors” 

that still need to be calibrated for individual catchments, or at least for hydrologically 

homogeneous regions: as a result, the regionalization of such models is not a very different 

exercise from the regionalization of a conceptual model having a similar number of degrees 

of freedom. 

Very probably, scale effects play a major role in the current inability to derive model 

parameters directly from descriptor maps: the “lumping” of hydrological behavior from 

smaller to bigger parts of a catchment is a highly non-linear process, as pointed out by Beven 

(1989) and more recently by Todini (2011). The first consequence of this non-linearity is that 

physiographic descriptors measured at a scale different than the model’s “pixels” are not 

necessairly meaningful. The second one is that, even if the modeling at the pixel scale can be 
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described as “physically based”, this is probably not the case for the fluxes between 

individual pixels, with the exclusion of channel hydraulics. 

4.4 With ungauged basins, the solution lies in finding a posteriori a relationship 

between calibrated parameters and relevant physiographic and climatic descriptors (or 

geographical coordinates) 

We make here a distinction between absolute and relative relationships. 

4.4.1 Absolute relationships 

The estimation of a mathematical formulation that could calculate parameter values as a 

function of physical descriptors (such as regressions) has probably been the most popular 

approach used in early attempts to regionalize conceptual RR models. Such an approach is 

very tempting as on one side it lends itself well to operational purposes, and on the other it 

might offer an a posteriori interpretation of the relationship between apparent catchment 

properties and hydrological behaviour. 

Unfortunately, this method rarely produces satisfying performances, as its underlying 

assumptions are very rarely respected. As Oudin et al. (2008) noticed, "there are two 

hypotheses underlying this approach. First, it considers that the link between observable 

catchment characteristics and model parameters is univocal, whereas unfortunately, most 

models have been shown to have no unique set of parameters to describe the behavior of a 

catchment, and the value of these parameters is more or less dependent on the specific 

conditions of the calibration period and/or possible errors in inputs (see e.g. Yapo et al., 

1996). The second underlying hypothesis is that observable catchment descriptors chosen for 

regressions bring us an information relevant to the behavior of the ungaged catchment. 

Unfortunately, the spatial variability of the catchment characteristics and the difficulty to 

observe underground characteristics constitute a major obstacle in identifying hydrologically-

relevant catchment descriptors." 

McIntyre et al. (2005) also examined model regionalization in the form of regressions 

between parameter values and catchment descriptors. Although this technique is considered 

desirable for the same reasons we have stated above, the authors noticed that so far its 

application has not been overly successful. The study then looks at the specific points that 

limit such approach. In agreement with Oudin et al. (2008) parameter identifiability is seen as 

one of major obstacles: the authors would rather like to identify each parameter's optimum 

value "in a way that considers its intended (functional) role in the model", but notice that this 

is seldom the case. Interactions between parameters and model structural error are seen as a 
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possible cause, and multi-objective optimization is proposed as a possible solution: for 

instance some parameters should be calibrated to an objective function that puts emphasis on 

high flows, others to an objective function that looks at low flows. The authors also advocate 

the exclusion of outliers without underlining one possible consequence: the regionalized 

model will have better results on most catchments, but will potentially make even greater 

errors on badly regionalized ones.  

Wagener and Wheater (2006) also tested a method of "sequential regionalization" similar to 

the one proposed by Lamb et al. (2000). In this case, a regression is calculated for the most 

identifiable parameter, then its values are fixed at the regionalized value for all catchments 

and a new optimization is run under this constraint, a regression is found for the second most 

identifiable parameter, and the procedure is repeated in sequential fashion until a regression is 

calculated for the least identifiable parameter. Such a method greatly improves the 

identifiability of some parameters but, on the other side, its performances in terms of 

simulation efficiency are on par with a non-sequential approach. 

Fernandez et al. (2000) proposed, in order to overcome the limits of regression-based 

regionalizations, to simultaneously run the calibration procedure and the parameter-descriptor 

regressions, using a compound objective function that valued simulation efficiency as well as 

good regression fit. Similarly to sequential methods, such an approach led to a big 

improvement to a relatively secondary issue (in the form of near-perfect regressions) at the 

expense of efficient parameter sets, when compared to simpler approaches. 

4.4.2 Relative relationships 

Other authors have proposed relative relationships between model parameters and catchment 

descriptors. In this case the shift between model parameter values at two sites is expressed as 

a function of the shift in physical properties. 

In this context Buytaert and Beven (2009) proposes a regionalization framework where prior 

distributions of parameter sets are first borrowed from a donor catchment that is recognized 

as hydrologically similar, and then modified according to the uncertainty inherent to the 

regionalization process and to the knowledge of the differences between donor and receiver. 

The example given is that of otherwise very similar catchments having a different land cover: 

such a change should influence the parameter(s) that account for evapotranspiration and can 

be modified on the basis of the existing literature regarding the specific change (for instance, 

a switch between grassland and pine forest) or of the hydrologist's own experience. The 

authors hope that repeated tests on several catchments will refine such parameter shifts, in a 
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way that can be interpreted as the establishment of an a posteriori relationship between 

changes in catchment properties and changes in model parameters. 

 

4.5 With ungauged basins, the solution lies in finding one or more similar 

catchment(s) (in order to transfer parameters from them) 

Among the most common regionalization approaches, and probably the most successful up to 

date, are regionalization methods that look for gauged catchments that are similar to the 

ungauged target catchment. The method consists in borrowing some hydrological information 

from them. Such information is usually put together with a simple or weighted average, and 

is usually exploited in the form of model parameters, simulated streamflow time series, or 

(more rarely) time series of rainfall and runoff for model calibration (see Goswami and 

O'Connor, 2006`, for this last option). 

Similarity-based approaches seem able to cope with the difficulties of rainfall-runoff 

modelling regionalization better than regression methods and "physically-based" models, at 

least from an operational point of view (i.e. when the only objective is to provide the best 

possible simulations). However, from the perspective of some of the hydrologists interested 

in gaining a better understanding of hydrological processes and hydrological modeling 

through the exercise of regionalization, they offer a less "quantitative" interpretation and can 

thus seem less attractive. 

Two main strategies have been used to find appropriate donors: one is the use of geographical 

distance as a proxy for hydrological similarity, the other the construction of a similarity 

metric on the basis of physiographic (sometimes also climatic) descriptors. Of course, many 

cases of "hybrid" approaches exist. 

4.5.1 Methods focusing on spatial proximity 

Here, we will first look at some examples of studies in which regionalization methods driven 

by spatial proximity were proposed or judged to be the most successful (including those that 

use spatial interpolations such as kriging or inverse distance weighting): 

Vandewiele and Elias (1995) estimated the parameters of a monthly water-balance model for 

75 Belgian catchments, located in a region thought to be quite hydrologically homogeneous. 

Two spatial-proximity approaches were compared: kriging interpolation or averaging the 

parameters of neighbouring catchments closer than 30 km. Kriging gave noticeably better 

results. 
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Parajka et al. (2005) tested several regionalization schemes for a semi-distributed model, on 

320 Austrian catchments. Methods based on spatial proximity, and especially on kriging of 

model parameters, performed best, followed very closely by a physiographic similarity 

method considering only one donor. Similarity was identified on the basis of an a priori 

selection of catchment attributes, which performed better than measures focusing on a single 

characteristic (such as geomorphology, topography, land use, rainfall, soil classes). 

Regression-based methods performed worse. Among them, local regressions (i.e. calculated 

on catchments closer than 50 km to the target), performed better than global methods 

(calculated once on all the catchments in the dataset). A later study by (Parajka et al., 2007) 

found that an iterative regional calibration producing parameter sets that are coherent with 

regional trends improves the results of a kriging-based regionalization, halving the efficiency 

loss observed when comparing the results obtained with locally calibrated and with 

regionalized parameters. 

Zvolensky et al. (2008) compared several regionalization methods on 23 subcatchments of 

the Hron River. A nearest-neighbour spatial proximity approach performed better than an 

approach using the parameter set calibrated on the whole catchment to model each of the sub-

catchments. A theoretical case is also presented, where the most similar donor in terms of 

parameter values is selected. This method is used to evaluate the potential for improvement of 

the donor selection: the authors conclude that the use of hydrologically relevant physical 

descriptors is advisable. 

Oudin et al.(2008) compared spatial proximity with a simple physical similarity metric based 

on similarity ranking of physical descriptor values (judged as a "safer" alternative to the 

normalization of descriptor distributions). The dataset used was very similar to the one used 

in this thesis work, quite spatially dense, and spatial proximity overperformed physical 

similarity, even if the two approaches showed a degree of complementarity (this aspect will 

be covered in greater detail in section 4.5.4). 

4.5.2 Methods focusing on physical similarity 

In several other studies (Kay et al., 2007; Li et al., 2009; McIntyre et al., 2005; Reichl et al., 

2009), on the contrary, a donor selection based on physiographic descriptors is proposed, or 

shown to perform better than spatial proximity: 

McIntyre et al. (2005) tested on 127 UK catchments a similarity measure based on catchment 

area, annual rainfall, and hydrological soil classification (BFIHOST). The model outputs 

obtained using the simulations based on the parameters of the 10 most similar donors were 

averaged, with a weight based on the similarity between the donor and the receiver 
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catchment. This method showed better result than both regression and spatial proximity. The 

authors commented that the poor results of the spatial proximity approach might be a 

consequence of the UK geology, which often changes markedly between neighbouring 

catchments. In this regard, it is also interesting to note that the results of the tested 

regionalization approaches were noticeably better on the less permeable catchments: the very 

permeable catchments (in particular the chalk catchments of southern England) are difficult 

to regionalize and/or to model with rainfall-runoff (RR) models. 

Kay et al. (2007) investigated the use of a site-similarity scheme where a specific catchment 

similarity measure is built for each of the four parameters of a rainfall-runoff model. In each 

case, the ungauged catchment parameter is calculated as a weighted average of the values 

calibrated on the 10 most similar donor catchments. Variations on the numbers of donors, 

catchment descriptors and weighting scheme to be used have been tested. The performances 

of the method are considered satisfying and worth the additional operational complexity, 

when compared to a regression approach. On the other side, the ease with which new data can 

be incorporated in this scheme is identified as an advantage and a way to avoid the case 

where the ungauged catchment that should be modeled is too "unusual" compared to the 

available donors, which leads to unsatisfying results. 

 Li et al. (2009) considered 210 catchments in south-eastern Australia, on which they applied 

two lumped RR models. For each pseudo-ungauged catchment, either one or eight donors are 

identified based on spatial proximity, physiographic similarity, or on a mixed approach that 

integrates the two. In the case where more than one donor is used, model outputs are 

averaged instead of the parameters. The authors found that the use of eight donors offers a 

considerable advantage over the use of only one. When comparing the three methods of 

donor identification, they notice that the differences in performance are mostly found in the 

poorer modeled catchments, with the integrated spatial-physical approach slightly 

outperforming spatial proximity and spatial proximity slightly outperforming physical 

similarity.  

Reichl et al. (2009) discusses the identification of a similarity metrics based on physiographic 

descriptors, for 184 Australian catchments. The most interesting feature of this study 

probably lies in the relative sparseness of the dataset (many catchments, but of very diverse 

hydrological behaviour and spread over a very large territory). As a consequence, the authors 

notice that a high sampling density across the descriptor space would be needed to identify 

relevant descriptors without an element of experience and intuition, and to optimize a robust 

similarity metric (one that is relatively independent of the catchments used to develop it). 
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Despite the difficult case presented by this dataset, however, physiographic similarity is 

shown to yield better results than spatial proximity and regression approaches. 

 

Overall, there seems to be no specific indication about whether one of the two approaches to 

identify donor catchments is superior: the dominance of either one (or of a hybrid method) 

seems to be case-specific, and in most comparison studies such performance difference is not 

huge. 

4.5.3 How to define similarity? 

Similarity-driven regionalization studies are based on the implicit assumption that similar 

physiographic properties imply a similar hydrological behaviour. Spatial-proximity methods 

share the same foundation, since in such case geographical coordinates are used as a proxy 

for physiographic properties that either cannot be easily observed, or whose measurements 

are not available to the modeller. 

Is this assumption correct? 

An interesting study by Oudin et al. (2010) focused on this specific subject, using a very 

similar dataset to the one used in this thesis, with the addition of 10 catchments located in 

southern England:  

� In the study, two catchments would be declared hydrologically similar if the model 

parameters calibrated on the first could produce acceptable simulations on the second (to 

ensure that this definition is not overly model-specific the authors repeated the test with 

two different models, which generally agreed on which catchments were similar). 

� Then, similarity in physiographic terms was estimated based on several descriptors 

regarding topography, climate, land cover and soil properties. As the previous steps 

allowed to find n "hydrological cousins" for a given catchment, an equal number of 

"physical cousins" was selected the same catchment. Finally, the overlap between the two 

sets of "cousins" was considered: if it was judged to be statistically significant (i.e. not 

likely to have happened by chance) then physical similarity was considered a good proxy 

for hydrological similarity, for the catchment originally considered. 

For roughly 60% of the dataset, the overlap between physical and hydrological similarity was 

judged as statistically significant (both models concurred on this). Yet the most interesting 

considerations regard those catchments for which physical and hydrological similarity did not 

agree, for both models: these were essentially hydrologically unresponsive catchments, yet 

often rather small and steep, which indicates that the origin of the unresponsiveness must be 

of geologic/ lithologic origin. Since the pool of descriptors did not include a geology-related 
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descriptor and the one related to soil properties performed rather poorly compared to others, 

this seems coherent with the difficulty to match these unresponsive catchments. 

 

What such a study shows is that on one side the assumptions behind physiographic similarity 

regionalization methods are essentially good, but on the other the absence of a complete 

description of all hydrologically relevant physical attributes of a catchment limits its 

application. 

4.5.4 Concerning possible complementarities between spatial proximity and physical 

similarity 

In the previous paragraph we have shown that in many cases physiographic similarity is a 

good proxy for hydrological similarity, yet in practical application such link might be weaker 

than expected because we often lack all of the relevant physiographic information. 

How does spatial proximity relate to these two definitions of similarity? 

In several studies, spatial proximity is presented as if it was a completely independent 

concept from site-similarity. For instance, Kay et al. (2007) interestingly commented a paper 

by Merz and Blöschl (2004) where it was found that nested catchments tend to be better 

donors by saying that "this is more likely due to site-similarity than spatial proximity".  

We think, on the contrary, that spatial-proximity is simply a clue for site-similarity and 

"hidden" (either not measured or not measurable) physical properties. In cases where it works 

better than approaches based exclusively on "strictly physical" descriptors, it does because we 

are still not successful enough in understanding and directly quantifying the relevant 

catchment characteristics, which can however be indirectly guessed thanks to their spatial 

structure, when a dense enough gauging network is available.  

In other cases, either the network density is too low, or the spatial variability of hydrological 

behaviour is too high, or the available physiographic descriptors are enough to characterize 

the different "hydrological types" found in the dataset, and so physical similarity is a better 

guess. For these reasons, there seems to be a degree of complementarity between physical 

similarity and spatial proximity. Oudin et al. (2008), for instance, showed that if we were able 

to tell in advance what of the two approaches would work better for a given ungauged 

catchment, such an ideal "combined" method would perform remarkably well. 

 

Another more subtle case that illustrates the nature of the relationship between proximity and 

similarities comes from the previously mentioned study by Oudin et al. (2010). In one 

section, the authors specifically focused on the task of finding French catchments that were 
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hydrologically or physically similar to the English catchments in their dataset, so that the 

possibility to select spatially-close catchments was excluded. Very interestingly, while 

catchments which were very physically similar could be found, these were not hydrologically 

similar to the target ones. On the contrary, when hydrologically similar catchments were 

found, they were quite far from being physically similar to the target sites! 

This example shows that in some ways, our unavoidably incomplete similarity metrics are 

successful indicators of hydrologically similar behaviour as long as at least some of the donor 

catchments they select are in relative proximity of the target site. Successful applications on 

dense, or rather homogeneous network should not be mistaken for a success at measuring all 

the hydrologically relevant physical properties of a catchment. 

4.6 With ungauged basins, the solution lies in using a previously made statistical 

regionalization to guide us in the choice of model parameters 

Some authors have recently advocated an indirect regionalization method. This method 

consists in first regionalizing flow statistics that synthetically describe the hydrologic 

response of the ungauged catchment. In a second time, parameter sets are chosen according to 

their ability to reproduce the behaviour outlined by the regionalized statistics. 

 

A few existing studies have addressed the issue of indirect regionalization methods. 

 

The study by Yu and Yang (2000) is probably the oldest one on the subject of indirect 

regionalization, that is presented as an alternative to regression relationships between model 

parameters and catchment descriptors. The authors regionalized a flow duration curve by 

means of homogeneous region identification and regression relationships, then they calibrated 

the parameters of a modified HBV model so that the flow duration curve calculated on the 

simulated flows would be as close as possible to the regionalized one. The fit of the two 

curves was evaluated on ten equally spaced flow duration quantiles, each of which was given 

equal importance in the final weighting. The authors evaluated the results on two catchments, 

concluding that the method they used resulted in a good fit on low flows and large errors on 

the peaks (as the objective function used did not put sufficient emphasis on the latter). 

 

Yadav et al. (2007) used regionalized flow-response descriptors to constrain ensemble 

simulations at ungauged locations. The flow statistics were regionalized by means of linear 

stepwise regression on 30 watersheds in the UK, and confidence limits for each regression 

were also calculated. Subsequently, model parameter sets were randomly generated from a 
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uniform distribution and, for each parameter set and catchment, streamflow was simulated 

and the previously regionalized flow characteristics were derived. Parameter sets were 

accepted or refused according to whether such statistics fell into the regionalized confidence 

boundaries or not. The authors state that "the idea of regionalizing such indices stems from 

the observation that uncertainty involved in regionalizing hydrologic model parameters can 

be large […] Watershed response characteristics on the other hand are not model-specific. 

Therefore uncertainties and confounding influences that might arise from the process of 

model identification are eliminated (or significantly reduced)". 

 

Bardossy (2007) adopted a very similar method, but in this case the model parameters were 

picked from ensembles of acceptable sets that were previously generated for neighboring 

catchments. To be considered "acceptable", a parameter set should yield at least 90% of the 

Nash and Sutcliffe efficiency provided by the optimal parameters for a given catchment. The 

idea was to generate a larger variety of possible parameter sets, from which to pick for 

transfer between pairs of catchments in the dataset, using regionalized mean and variance of 

the streamflow record as acceptability criteria. An interesting result of this study is that for 

four of the sixteen catchments considered, no satisfying parameter set could be found in 

ungauged mode, because all candidate sets produced hydrographs whose response 

characteristics were too far from the regionalized ones. As in the case of Yadav et al. (2007), 

dependency of the parameters on the model structure, parameter uncertainty and equifinality 

were given as reasons to develop an indirect regionalization method.   

 

Montanari and Toth (2007) and Castiglioni et al. (2010) both used indirect regionalization 

methods derived from Whittle's maximum likelihood estimation approach (Whittle, 1953), 

which is based on matching the mean value and spectral properties of two time series.  

� Montanari and Toth (2007) provide extensive details about how Whittle's likelihood can 

be approximated for the use in hydrological model calibration, particularly in the case of 

ungauged or scarcely gauged basins. Results are presented only for the second case, i.e. 

when historical or sparse streamflow data is used to calculate the flow statistics that are 

needed to calibrate the model.  

� Castiglioni et al. (2010) approximate Whittle's likelihood as a similarity of the mean, 

standard deviation and lag-1 autocorrelation of observed and simulated streamflow 

records: it is then possible to calibrate a RR model to regional estimates of these statistics. 

As one might want to emphasize the role of either one of the three statistics (according to 

the scope of the regionalization), a Pareto ensemble of non-dominated parameter sets (i.e. 
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those sets that can not be outperformed on one statistic without doing worse on the other 

two) is identified. Finally, a streamflow time series is generated as mean of all 

simulations made with non-dominated parameter sets, and its performance is evaluated as 

NS efficiency. After application of this method on 52 catchments in central Italy, the 

authors concluded that "regional calibration procedure is potentially able to convey useful 

information" but at the same time "it is unlikely that regional information is enough to 

calibrate a RR model with the reliability that is required in real-world applications". 

Finally, while the use of an indirect regionalization method is advocated as a useful way 

to constrain the feasible parameter space, the integration of different information is seen 

as a necessary element to further reduce its size. 

 

Recently, Westerberg et al. (2010) considered calibration of hydrological models using flow 

duration curves (FDC), but not using regionalized ones. However, they considered the 

benefits of such a method in the case when rainfall and runoff records are available, but not 

for sufficiently overlapping periods, which would be treated as ungauged if a traditional time 

series calibration was used.  

4.7 My opinion (before I started this work), how it evolved, and how the solutions I 

tried to implement relate to the literature 

When first approaching the subject of regionalization, and the literature concerning it, it is 

relatively easy to fall in the trap of considering it to be a “war” of concurring approaches and 

methods. For instance, as seen in section 4.5, even methods sharing many assumptions, such 

as spatial proximity and physical similarity, are often presented as opposing choices, 

sometimes even as radically different ones!  

Such was my perspective at the beginning of this work. This attitude was reinforced by the 

opportunity of working on a large and diverse dataset, seen as a benchmark that can ensure 

general conclusions about the good (or bad) performances of a regionalization approach, 

allowing one to eventually propose a “one size fits all”, robust method.  

It was exactly the ambition to propose the most general approach that allowed a slight change 

in perspective, as a consequence of the robustness test that have been performed. When 

comparing relatively simple, top-down approaches that are likely to be adopted in an 

engineering context, it is clear that their relative results often depends quite heavily on the 

characteristics of the dataset they are applied to, an aspect that is usually not given explicit 

attention in the existing literature. 
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As a consequence, this thesis work has shaped itself, in its third and fourth parts, as a 

comparative study that tries to define the conditions under which each of the tested methods 

should be expected to give acceptable results and those under which it should be expected to 

fail, at least in terms of spatial density of the dataset.  

On the other hand, this work focuses on the complementarity between different 

regionalization approaches showed by Oudin et al. (2008), and on how “hybrid” methods can 

take advantage of it. 
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Part 2 – Studies relative to flow statistics and their regionalization 

 

 

 

 

 

In this part, we will focus on the regionalization of flow statistics. The main objective of this 

part is to explore a complementary and two-step use of physiographic/climatic information 

versus spatial proximity, on an object that can be considered “simpler” than rainfall-runoff 

models: 

� Chapter 5 presents the first part of this work, aiming at relating flow statistics to 

physical descriptors; 

� Chapter 6 presents the use of neighbour catchments residuals to improve the 

efficiency of flow statistics regionalization. 
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5 Linking flow statistics to physiographic descriptors 

 

 

 

 

 

In this chapter, we present exploratory studies aiming at linking simple flow statistics with 

physiographic descriptors. As relevant statistics, we have chosen the quantiles of each 

catchment's flow duration curve. We first discuss the specificities of flow statistics 

regionalization, then we present and discuss our results. 
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5.1 Brief review of the literature on the regionalization of flow statistics  

The estimation of flow statistics at ungauged catchments is often needed for many 

engineering problems, and performed, as for the regionalization of rainfall runoff models, by 

means of a transfer of information from gauged catchments to the site of interest.  

 

Several strategies have been used to identify which gauged catchments should be used as 

donors of information for a particular ungauged site, all implicitly agreeing on the assumption 

of an hydrological similarity between the donors and receiver sites. 

 

The oldest (and probably most popular) similarity criterion is spatial proximity: e.g. 

Darlymple (1960) used it to divide a study domain into geographical regions, assuming that 

within each one the flood frequency response can be considered homogeneous apart from a 

scaling factor (the index flood). This popular approach has evolved into forms of 

geostatistical interpolations that in some cases also use information about the organization of 

catchments along the river network: 

 

� Sauquet et al (2000) developed a method for the interpolation of average annual 

runoff based on a geostatistical distance between catchments and on a mass-

conservation constraint (the total runoff for a given catchment should be equal to the 

sum of the runoffs of its sub-catchments). The geostatistical distance between 

catchments a and b is defined as the mean distance between all possible pairs of points 

in a and b. 

� Skøien et al. (2006) proposed a similar method –called top-kriging- for the 

interpolation of flow statistics. 

 

Other approaches are based on measurable catchment attributes, such as catchment size, land 

use, geology, soil characteristics, climatic variables: catchments having similar attributes are 

assumed to be hydrologically similar.  

 

Similarly to what seen in our review of regionalization for rainfall-runoff models, catchment 

characteristics can be used to form pooling groups of donor sites thought to be similar to the 

receiver, or to establish regression relationships between flow statistics and catchment 

attributes: this latter approach is generally more successful than for the parameters of RR 

models, as can be seen from the following examples:  
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� Tasker and Stedinger (1989) proposed linear regressions against catchment 

descriptors for the estimation of flow statistics at ungauged sites 

� Smakhtin et al. (1997) regionalized flow duration curves within a hydrologically 

homogeneous region in South Africa. The procedure involved the normalization of 

the FDCs of the gauged catchment used in the study by their mean annual runoff; 

their average was taken as regional normalized FDC. Mean annual runoff (the scaling 

factor) was then regionalized by means of a regression against mean annual 

precipitation and catchment area. 

� Mazvimavi et al. (2005) compared the use of linear regressions and neural networks 

in the regionalization of mean annual flow, flow quantiles and base flow index on 52 

catchments in Zimbabwe, finding that linear regressions offered better results on the 

mean annual flow and the base flow index, while flow quantiles presented a non-

linear relationship with catchment descriptors and where generally better estimated 

with neural networks. 

� Longobardi and Villani (2008) regionalized the Baseflow Index in region of southern 

Italy using linear regressions using a catchment permeability index as the only 

descriptor. 

 

Only in more recent years a limited number of studies focused on the comparison and on the 

possible integration of spatial proximity and catchment attributes in the regionalization of 

flow statistics:  

� Merz and Blöschl (2005) compared several methods using spatial proximity and 

catchment descriptors for the regionalization of flood moments in Austria, finding that 

methods relying only on catchment descriptors performed noticeably worse than those 

based on spatial proximity alone or on a combination of spatial proximity and 

catchment descriptors. 

� Kjeldsen and Jones (2010) found that applying a nearest-neighbour spatial-proximity 

based data-transfer procedure to the residuals of a regression model greatly improves 

the prediction of the index flood for ungauged sites, particularly when the regression 

is based on fewer catchment descriptors and the gauging network is dense. 

In this regard, our aim is regionalize flow statistics using jointly catchment attributes and 

spatial organization. This is done on flow statistics, as a first trial before following a similar 

methodology on RR models. 
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5.2 Regression as a conceptual model of the relationship between physiographic 

properties, climate and streamflow 

As "entry-level" regionalization of flow statistics, we have chosen to fit a stepwise regression 

between physiographic descriptors and flow statistics, on the whole dataset.  

For sake of simplicity, we assumed that some of the hypotheses under which such regression 

model is acceptable are verified, even though a more rigorous approach would have required 

the use of appropriate statistical tests. These hypotheses regard: 

− The fact that the stepwise procedure requires that explicative variables are be 

normally distributed 

− The degree of correlation between the explicative variables (multicollinearity). If it is 

too high, the regression’s coefficients will be unstable (small changes in the variables’ 

samples will cause big changes in the coefficients) 

− That there is indeed a linear relationship between the explicative variables and the 

regionalized flows: this should be verified a-posteriori by making sure that the 

regression residuals are not correlated with the explicative variables. 

5.2.1 Nation-wide vs local formulations 

The literature abounds with methods aiming at identifying homogeneous regions (or 

homogeneous pooling groups)(see e.g. Viglione et al., 2007). Regionalization studies are 

often restricted to some previously selected 'homogeneous domain'. In the first case presented 

here, where we limit ourselves to a simple regression formula, we could try to identify a 

specific regression (or at least specific parameters) for each of the homogeneous regions. 

We purposely chose not to do so, and to fit only one relationship for our entire study domain. 

We will show later that it provides the most robust results, (even if the regression on the 

whole dataset yields a poorer performance, compared to the definition of pooling groups or 

homogeneous sub-regions on which specific regressions are fitted. 

This choice also comes from the desire to treat physiographic and climatic information 

independently from the spatial (geographic) one. This way, the results we obtain when only 

using the physiographic information represent our ability to observe the dominant 

hydrological processes and synthesize them with quantitative descriptors, while the 

performance gain that we will get when accounting for the geographical position of a 

catchment represents our ignorance of the relevant processes or the inability to observe them 

at the appropriate scale. 
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5.2.2 Selecting relevant descriptors 

For the purpose of regionalizing each flow statistic, not all of the catchment information 

available is necessarily relevant. Furthermore, some descriptors might offer redundant 

information. Consequently, as our objective was to have synthetic, meaningful formulations, 

some form of preliminary data mining was necessary. 

In order to select the relevant physiographic and climatic descriptors for each of the 

regionalized statistics, we used a stepwise regression method. The key idea of such a 

procedure is that each explanatory variable must prove significant, i.e. that the performance 

increase observed when including it in the formulation has a very high probability to be really 

an effect of the variable's informative value and a very low probability to have happened by 

chance. 

In more detail, the stepwise regression method we used goes through the following stages: 

- For each variable, two regression forms are tested: linear and logarithmic; 

- For either of the two regression forms, a "forward-entry procedure" is followed in the 

first place. Starting from a model with zero variables, the descriptor assuring the best 

increase in correlation coefficient is added to the regression formulation, and its 

significance is assessed with a Student's t-test. This statistical test considers the 

hypothesis that the improvement of the correlation coefficient is not due to the new 

variable, but happened by chance. If this hypothesis has a probability lower than 0.05, 

the variable is considered significant, and kept in the regression formulation.  

- Secondly, a "backward removal" procedure is run on the obtained regression model. 

Each one of the retained explanatory variables is tested again, to see whether its 

removal causes a performance drop that might also happen by chance. If the t-test 

gives a probability greater than 0.05, the variable is discarded. This removal 

procedure is used to eliminate redundancies: for instance it can happen that, during 

the forward-entry phase, a variable identified as significant in the early iterations is 

"outdated" by a combination of variables added later on. 

- The "forward entry – backward removal" cycle is iterated until no variables can be 

added nor discarded. 

- For all flow statistics, the results of the two regression forms (linear and logarithmic) 

were compared. In all cases, the log-transformed regression gave a better result and 

resulted in more retained variables. We will illustrate the retained regression form in 

the following equation: 
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Eq. 1 

where Q̂  is the regionalized flow statistic in mm per time unit, ix  are the physiographic 

descriptors, a is the constant and bi are the determined coefficients of regression. 

 

5.3 Streamflow statistics considered and results 

5.3.1 Streamflow statistics considered 

For all of the available catchments, we calculated the following flow statistics, based on 

records spanning from 1986 to 2005: 

− Average annual runoff; 

− Percentiles of the Flow Duration Curve (FDC), normalized by the average runoff. We 

considered eleven quantiles of the FDC, we will refer to these values according to the 

percentage of non exceedance (Q5, for instance, is the value that is exceeded 95% of 

the time). With this nomenclature, we have: Q5, Q10, Q20, …, Q90, Q95; 

− Three "slopes" of the FDC were considered. Those allow to describe the 

responsiveness of the catchment for high, intermediate and low flow values: 

  

 

 
Eq. 2 

 

 
Eq. 3 

 

 
Eq. 4 

5.3.2 List of physiographic descriptors 

For each of the studied catchments, we had the following physiographic descriptors: 

- Climatic descriptors: Average yearly precipitation P [mm], average yearly potential 

evapotranspiration PE [mm], average yearly specific humidity [g/kg], average yearly 

wind speed [m/s] 

- Geographic descriptors: Surface S [km2], Elevation [m], Slope. For elevation and 

slope, maximum, minimum and average values, as well as quantiles of their 

distributions, were calculated from a DTM. For naming the quantiles, we'll use the 
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convention that the maximum value would be labelled Q100 and the minimum would 

be labelled Q0 

- Land use descriptors, expressed as % of the total catchment surface classified under 

specific classes of the Corine Land Cover European land use database (see 

http://www.eea.europa.eu/publications/COR0-landcover). We chose to aggregate 

land-cover classes under the following descriptors: urban (Corine land cover classes 

from 111 to 124), forest (Corine 311-313), agricultural (Corine 211-213, indicating 

arable land), fruit olives and vineyards (Corine 221-223), hybrid agricultural spaces 

(Corine 241-244), other (remaining corine classes) 

5.3.3 Results 

In Table 4 we present an overall review of the regression results. Average yearly runoff is 

clearly the better reproduced flow statistic, while for the flow duration curve quantiles a trend 

emerges: peak flows are better reproduced, while the regressions for lower–magnitude flows 

can be very poor. A possible explanation is that the available catchment descriptors do not 

contain relevant information about baseflow formation and connection to larger acquifer 

systems.  

These results are also graphically presented in Figure 7 to Figure 10. 

 

Table 4: coefficient of determination and RMSE for the regressions between flow statistics and 
catchment descriptors (calculated on log-transformed values). Av_Q stands for average annual 
runoff. 

 

 

 

 

Variable R^2  RMSE 
Av_Q 0.735 0.335 
Q5 0.308 1.022 
Q10 0.31 0.915 
Q20 0.365 0.726 
Q30 0.441 0.613 
Q60 0.546 0.518 
Q50 0.65 0.446 
Q60 0.697 0.399 
Q70 0.727 0.367 
Q80 0.734 0.355 
Q90 0.71 0.368 
Q95 0.669 0.402 
S1 0.506 0.508 
S2 0.714 0.397 
S3 0.587 0.522 
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Figure 7: Scatterplot of empirical and 
regression-calculated values of average 
yearly runoff 
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Figure 8: Scatterplots of empirical and regression-calculated values for flow statistics Q5to Q50 
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Figure 9: Scatterplots of empirical and regression-calculated values for flow statistics Q60 to Q95 

 

Q60 

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

empirical [mm/d]

re
gr

es
si

on
 [

m
m

/d
]

 

Q70 

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

empirical [mm/d]

re
gr

es
si

on
 [

m
m

/d
]

 

Q80 

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

empirical [mm/d]

re
gr

es
si

on
 [

m
m

/d
]

 

Q90 

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

empirical [mm/d]

re
gr

es
si

on
 [

m
m

/d
]

 

Q95 

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

empirical [mm/d]

re
gr

es
si

on
 [

m
m

/d
]

 

 

 



 

 - 59 -  

 

Figure 10: Scatterplots of empirical and regression-calculated values for flow statistics S1, S2, S3  

5.3.4 Review of the dependence of the selected statistics on each descriptor 

In this section we will have a general look at how the coefficients attributed to each 

descriptor vary depending on the flow statistic considered, and attempt to explain their 

hydrological meaning.   

Table 5 and Table 6 present the rankings of significance of the selected descriptors for each 

flow statistic (determined on p-values), and their regression coefficients.  

The strongest influence is that of climatic forcings. Mean annual precipitation is the most 

significant descriptor overall, with a higher significance level for high flows than for low 

flows, where it is surpassed by evapotranspiration: high PE values mean low values of low 

flow, and viceversa. On the opposite, low flows are positively correlated to specific humidity 

and temperature values, and this could be due to the relative simplicity of the formula used 
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here to calculate PE, that only takes latitude and daily temperature into account (Oudin et al., 

2005).  

Table 5: Rankings of the significance of available descriptors for each flow statistic (threshold at 
p=0.05). 

 Q_Av Q95 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q5 S1 S2 S3 

P 1 4 2 2 2 1 1 1 1 1 1 1 1 1 1 

PE 6 1 1 1 1 2 2 2 2 4 7   2 4   

Hum   3 3 3 3 4 3 4 4 5 8   4 5   

T   6 6 7 7 5 4 8 10     5    

Wind 7          10 10 7     

A 2           7 5 5 2 2 2   3 2 

Slope_0.1 3   10   4 3 8       3 3 3   8 

Slope_0.2          3 3 3     2   

Slope_0.7                  6 

Slope_0.8   9 9               

Slope_0.9   8 8 4   11        6 5 

SlopeMin 5                 6 6 5   7 7 

Z_0.1                       6       

Z_0.4             5     4 

Z_0.6                  3 

Z_0.9              4     

Z_av             4       

Zmax 4                             

URBAN   7 5 8 8 7 6 7 7 9    7    

FOREST   5 7 5 5 6 5 6 9     6    

FRUIT 8 10    9 10 9 6 7 9    8   

HYBRID   2 4 6 6 8 9 10 8 8           
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Table 6: Regression coefficients for each descriptor and flow statistic 

  Q_Av Q95 Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Q5 S1 S2 S3 

P 1.89 1.18 1.22 1.26 1.52 1.58 1.60 1.72 1.77 1.89 1.97 2.02 1.63 2.07 1.93 

PE -0.54 -12.30 -10.80 -9.44 -7.69 -6.09 -5.50 -4.57 -3.92 -2.44 -1.27  -6.18 -2.50  

Hum  7.52 7.11 6.07 5.20 4.00 3.85 3.44 3.22 2.63 1.36  4.30 2.61  

T  2.22 1.84 1.53 1.20 1.00 0.81 0.53 0.37    0.86   

Wind 0.20          0.13 0.12 0.17    

A -0.11      -0.04 -0.05 -0.06 -0.10 -0.11 -0.15  -0.09 -0.20 

Slope_0.1 0.19  0.20  0.20 0.18 0.11   0.17 0.18 0.25 0.21  0.15 

Slope_0.2        0.15 0.14     0.24  

Slope_0.7               0.78 

Slope_0.8  -1.51 -1.48             

Slope_0.9  2.02 1.73 0.31   0.10       -0.14 -0.71 

SlopeMin -0.12         -0.10 -0.12 -0.17  -0.08 -0.21 

Z_0.1            0.22    

Z_0.4           0.73    1.67 

Z_0.6               -1.92 

Z_0.9            -0.42    

Z_av           -0.82     

Zmax -0.13               

URBAN  0.13 0.11 0.07 0.07 0.06 0.04 0.04 0.03 0.02   0.03   

FOREST  0.25 0.19 0.17 0.14 0.10 0.08 0.07 0.04    0.09   

FRUIT -0.02 -0.06    -0.03 -0.03 -0.02 -0.02 -0.03 -0.02   -0.02  

HYBRID  -0.18 -0.16 -0.11 -0.09 -0.06 -0.04 -0.03 -0.03 -0.03      

 

All flow quantiles show a moderate positive dependence to the lower quantiles of the slope 

distribution, but if one looks at the descriptor's significance, it is evident that this 

phenomenon is more marked for the higher flows and for mean yearly runoff. Our hypothesis 

is that this dependence could be a byproduct of our criteria for choosing catchments: 

excluding noticeable human influences means we have fewer stations in the zones of aquifer 

resurgence, and more upstream catchments that, on average, tend to "leak" some water. 

Among these, those who have "steeper flatlands" tend to infiltrate less that those who are 

more markedly flat. 

 

Regarding the dependence on the distribution of heights above the sea level, no big trend is 

shown, and there seems to be a contradictory dependence for high flows: they seem to be 

moderately related to the height of the bottom of the catchment, but inversely related to the 

average height, or the height of the catchment's head. 

 

 Although small, the dependence on land cover classes is quite interesting, and is generally 

more marked for lower flows than for higher ones. Our hypothesis is that land cover is 

partially a consequence of the climatic and/or hydrological character of a region, and then a 

proxy for it. See for instance Figure 11: high values of "hybrid" land cover are mostly found 

in regions having an oceanic or partially oceanic climate. 
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Figure 11: Map of the "hybrid" land cover class, expressed as fraction of the catchment’s 
surface occupied by it. Most of the catchments that are rich with this land cover are climatically 
influenced by the Atlantic ocean. 

 

 



 

 - 63 -  

6 Using neighbour catchments residuals to improve the 
efficiency of flow statistics regionalization 

 

 

 

 

 

In this chapter we will show how geographical distance between catchment centroids can be 

used as a proxy for those hydrological mechanisms that are poorly related to the available 

physiographic descriptors, or that cannot be properly modelled with regressions at the 

national scale.  

First, we will present the general Inverse Distance Weighting interpolation technique we used 

for this purpose, and discuss its results. Then, we will go through two techniques that can 

further improve the results, based on the surface and on the spatial organization of catchments 

(accounting for nested donor catchments). 

We will also present a specific study (which was published in the Hydrological Sciences 

Journal) concerning the possible selection of the donor catchments in order to improve the 

efficiency of residual interpolation. 
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6.1 Residual's spatial structure as a descriptor of overlooked or not observable 

properties 

Here we call "residual" the following quantity: 

 

 
Eq. 5 

 

where iQ̂  is the regression-regionalized flow statistic and iQ  is its empirical value (the one 

calculated from the 20-year streamflow record).  

If one looks at these residuals on a map, a spatial structure is evident, and it is more evident 

for those statistics which couldn't be reproduced accurately with a regression.  

 

The spatial structure shown by the residuals is likely to be related to information that has 

been overlooked in the choice of catchment descriptors (such as more detailed descriptors of 

the climatic forcings) or that is not easily observed, and can be exploited to improve our 

estimations at ungauged sites. 

6.1.1 IDW interpolation 

At an ungauged site j , j

∧
ϑ  can be estimated as: )( neighboursif ij ==

∧
ϑϑ  

This can be done with any spatial interpolation technique: here we've chosen to use inverse 

distance weighting (IDW) for its simplicity, which makes it easy to modify the weights given 

to each of the interpolated points according to additional criteria (such as whether a gauged 

catchment is or isn't nested with the ungauged we're interested in, as we'll see in paragraph 

6.3).  

In IDW, the weight assigned to each "donor" catchment i  is calculated as: 

 αd
wi

1=  

where d is the distance between the centroids of the donor and target catchments. 

Then, j

∧
ϑ  is obtained with a geometric mean: 

iii QQ ˆ/=ϑ
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Eq. 6 

 

The inverse distance exponent α  has been calculated with an optimization procedure, 

following a jack-knife technique: each catchment in turn was treated as ungauged and its flow 

values estimated for a given value of α . A root mean square error on the whole dataset can 

then be calculated an the inverse distance exponent that minimizes it is chosen. 

6.1.2 Results 

Table 7 shows the R2 and RMSE obtained before and after the IDW interpolation of the 

residuals. A considerable improvement (higher R2  and lower RMSE) is obtained on all flow 

statistics, even if for Q20 we have a slightly lower R2 after the interpolation: in this regard, we 

would like to remember that the inverse distance exponent has been calibrated to minimize 

RMSE, and it is not assured that this would always lead to a better R2. 

 

Table 7: Comparison in the results between regression-estimated statistics and regression with 
IDW interpolation of the residuals. 

 R2 RMSE 
 regression reg.+IDW regression reg.+IDW 
Av_Q 0.735 0.770 0.335 0.311 
Q5 0.308 0.407 1.022 0.953 
Q10 0.310 0.362 0.915 0.839 
Q20 0.365 0.349 0.726 0.680 
Q30 0.441 0.437 0.613 0.589 
Q40 0.546 0.586 0.518 0.484 
Q50 0.650 0.710 0.446 0.404 
Q60 0.697 0.742 0.399 0.367 
Q70 0.727 0.762 0.367 0.342 
Q80 0.734 0.772 0.355 0.327 
Q90 0.710 0.758 0.368 0.335 
Q95 0.669 0.728 0.402 0.363 
S1 0.506 0.515 0.508 0.503 
S2 0.714 0.762 0.397 0.360 
S3 0.587 0.678 0.522 0.452 
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Figure 12: Scatterplots of empirical and estimated flow statistics, with a regression model (left 
column) or with regression and IDW interpolation of the residuals (right column) 
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Figure 12 compares the regionalization of some flow statistics with regression only and with 

IDW interpolation of the residuals. We have chosen to show only three quantiles (Q10, Q50, 

Q90) since the behaviour is very similar on the other statistics. It can be seen that the 

additional interpolation narrows the scatterplot cloud and tends to mitigate the biases that 

tend to especially affect catchments with lower flows. 

6.2 Constraints on the surface of donor catchments 

With a simple IDW method, it might happen that two catchments (most typically nested 

ones) with very different areas might have very close centroids, and get very high reciprocal 

influence. This situation is potentially "dangerous", for several reasons: 

� one could logically expect the hydrological behaviour of a large catchment to be 

different from that of a small nested sub-catchment of a secondary affluent, from a 

"physical" point of view; 

� also, statistical thinking easily leads to expect that if we class all our catchments by size, 

we should observe much more variability (of significant flow values, or of hydrological 

behaviour) in the smaller catchments than in the bigger one: big catchments are likely to 

"average out" extreme behaviours and phenomena that can, on the other hand, be 

observed at the local scale. 

For these reasons, we decided to test limitations on the surface of donor catchments: if the 

catchment was too small or too large compared to the ungaged receiver, it would not be used 

as donor. 

 

We optimized the values of the acceptable surface ratios minimizing RMSE, and identified an 

interesting asymmetrical pattern:  no catchment seems to be "too big" to be a donor, 

suggesting that the smoother, "averaged out" behaviour of the larger catchments provide a 

safe contribution in the estimation of smaller ones. But there is some improvement when 

forbidding smaller donors. 

Table 8 shows the RMSE on log-values for simple IDW and IDW with area-ratio constraint 

allows to analyze this phenomenon for different flow quantiles  
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Table 8: RMSE on log-values for simple IDW and IDW with area-ratio constraint 

  
RMSE 

Simple idw 
RMSE 

Area constraint Area Ratio 

Av_Q 
0.311 0.141 11.905 

Q5 
0.953 0.539 3.226 

Q10 
0.839 0.467 3.226 

Q20 
0.680 0.365 5.076 

Q30 
0.589 0.299 5.076 

Q40 
0.484 0.232 5.076 

Q50 
0.404 0.184 5.000 

Q60 
0.367 0.165 5.000 

Q70 
0.342 0.153 2.695 

Q80 
0.327 0.147 11.111 

Q90 
0.335 0.150 11.905 

Q95 
0.363 0.162 11.765 

S1 
0.503 0.264 5.025 

S2 
0.360 0.164 14.706 

S3 
0.452 0.214 18.519 

 

In addition to this, we have to say that the surface ratio constraint lost its interest if applied 

after the donors list was cleaned from outliers with the technique described in chapter 6.4. 

This is very interesting, because it suggests that the "dangerous" small donors are 

systematically recognized as "outliers". 

These results lead to think that both methods target the extreme behaviours which are very 

local (specific to small catchments), and can also lead to the following interpretations: 

� When estimating the hydrological properties of small, upstream ungaged catchments 

having lot of downstream data, it is relatively easy to provide reliable, averaged-out, 

"safe" results, but there is a risk of under-estimating uncertainties and extreme scenarios; 

� Conversely, estimating downstream stations with upstream data is likely to produce 

greater errors, and non-nested catchments of the same size will probably be more helpful 

than a small nested catchment. 
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Figure 13: Simple IDW scatterplots (left) confronted with size-constraint method (right). Low to 
high: Q95, Q50, Q5 
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6.3 Accounting for nested donor catchments 

It might happen that an ungaged position where we want to estimate some hydrological 

properties (a reference flow or the parameters of an hydrological model), has one (or more) 

gauged neighboring station(s) located upstream or downstream on the same river network, so 

that either the gauged catchment is a part of the ungaged catchment we are interested in, or 

vice versa. We will say that in this case, the gauged and the ungauged catchments are nested. 

 

Some regionalization studies, especially the one by Merz and Blöschl (2004) found that in a 

spatially-based scheme, giving more weight to nested donors achieves better results that not 

discriminating on this basis.  

 

We then decided to test some approaches to account specifically for nested donor catchments. 

We will present some of the formulations tested, and then discuss which one performs better. 

 

Each donor catchment i  is given a weight iw , that is then used to predict the residual ϑ  as a 

weighted average of the observed residuals iϑ . If donor i is nested with the ungauged 

catchment we are considering , we will modify iw as follows. 

 

The simplest way to do it is by multiplying iw  by a certain factor a, to be calibrated:                       

      a)          αd
awi

1⋅=                                     

The exponent α  which regulates the weight of the geographic distance can also be modified 

       b)           
ai

d
w ⋅= α

1
 

We can also look at how much area the two catchments share, 
hmentbiggercatc

chmentsmallercat

Area

Area
f = , and 

then write the weight wi as: 

      c)                αdf
w

a

i

1

1

1 ⋅








−
=  

 

 

The presented approaches all provide a slight performance increase, but approach c) is clearly 

offering better performances 
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Table 9: RMSE on log-values of flow statistics when using simple IDW or IDW giving more 
weight to nested catchments. The third column shows the esponent "a" presented at point c) 

  
RMSE 

Simple idw 
RMSE 
Nested Exponent 

Av_Q 
0.311 0.147 22.174 

Q95 
0.953 0.568 8.967 

Q10 
0.839 0.497 8.874 

Q20 
0.680 0.403 10.930 

Q30 
0.589 0.330 13.719 

Q40 
0.484 0.258 15.941 

Q50 
0.404 0.193 18.312 

Q60 
0.367 0.174 18.144 

Q70 
0.342 0.162 18.395 

Q80 
0.327 0.155 17.487 

Q90 
0.335 0.156 4.931 

Q5 
0.363 0.170 3.315 

S1 
0.503 0.296 8.177 

S2 
0.360 0.170 14.734 

S3 
0.452 0.220 1.557 
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Figure 14: Simple IDW scatterplots (left) confronted with nested donor weighting method 
(right). Low to high: Q 95, Q50, Q5 
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6.4 Excluding outliers from the donors' list 

One of the issues of every regionalization procedure is the treatment of extreme cases, and 

where catchments are used as donors, a question arises: should we eliminate the outliers from 

our donors' list. If yes, which technique should we use to identify them? 

The following article, published in the Hydrological Sciences Journal, in the special issue 

"The Court of Miracles of Hydrology", addresses this point in the context of a two-step 

regionalization of flow statistics that is in all things analogous to the one presented in this 

chapter: the core of the method is the use of a regression formulation as first step, followed 

by an IDW interpolation of the residuals as second step. 

A few differences between the context of the article and the rest of this chapter need to be 

pointed out:  

- Instead of FDC quantiles, the article focuses on three flow statistics which are 

particularly relevant in engineering practice in France, as they are commonly 

prescribed by the French legislation as project variables; 

- The list of available physiographic descriptors used for the article was slightly 

different from the one used for the regionalization of the FDC quantiles, even if most 

variables are present in both lists; 

- The initial regression between the physiographic descriptors and the regionalized flow 

statistics was not done using a stepwise regression approach, and the statistical 

relevancy of the retained descriptors was not evaluated. The regressions were instead 

obtained empirically by testing all possible combinations of "reasonably few" 

explanatory variables (no more than five) and then selecting the combination that was 

subjectively judged to give the best performance for the least number of variables 

used. The importance given to the use of "as few variables as possible" can be 

explained as the primary objective of that work was to produce a tool to be used in 

common engineering practice: there was a fear that a "too complicated" formula 

would never be used by operational colleagues. The choice of not using a stepwise 

approach can be defended by saying that while its driving criterion (statistical 

relevancy) is objective and consistent, such a method still contains a great deal of 

subjectivity in the choice of the relevancy level to be accepted and of the algorithm to 

be used (which combination of forward entry and backwards sorting?). In an 

operational perspective, its advantage lies essentially in the automatization and in the 

possibility to treat a great number of variables in a less time-consuming way, a 
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concern that was not existent given the relatively limited number of variables and 

combinations of variables to be tested. 

- The database of precipitation and streamflow records used was, again, slightly 

different to the one used for the rest of the thesis work. The one used for the main 

body of this thesis is a more up-to-date version, especially concerning the 

interpolation of pluviometric records and the inclusion of previously unavailable 

stations. Out of this renewed database, a new selection of catchments has been made: 

human influences have been re-evaluated, and it was chosen to work only on records 

that are reasonably complete over the same 20-year time window, a criterion not used 

for the previous work. 

 

Outliers are commonly defined as the most extreme values of a sample. When referring to 

catchments, one possibility is to define the sample as the whole dataset, as done 

commonly by hydrologists. This means that discarding some outliers would automatically 

imply a reduction of the dataset’s hydrological density, which in our opinion can be 

counter-productive for regionalization applications. 

In the following article we propose an alternative way to identify hydrological outliers: 

the sample is limited to geographically close catchments, so that outliers will be defined 

as those catchments whose behaviors differs the most from their neighbors. 

The effect of discarding donor catchments which fit this second definition is a smoothing 

of the hydrological variability the geographical space: local anomalies are ignored. While 

the overall variability of the dataset is almost unaffected, such procedure produces more 

conservative estimations of ungauged catchments’ flow statistics, and, as a consequence, 

a more robust regionalization (if the outlier discarding technique is applied to the right 

degree) 
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6.5 Final considerations on the results obtained for the regionalization of flow 

statistics 

 

In the last two chapters, we reviewed a regionalization method for flow statistics based on 

regression with IDW interpolation of the residuals. This approach is advantageous if 

compared with a method based on regression alone, and this advantage is greater if one takes 

in account the relative size of donor catchments compared to the receiver, and their position 

on the stream network, as explained in sections 6.2 and 6.3. 

 

From an operational point of view, it would be interesting to test whether on a dense gauging 

network such as the one France has, similar results could be obtained with the use of less 

catchment descriptors. 

 

From a scientific point of view, we remark that the best regression performances are obtained 

on average annual flows and on higher-than-median flow quantiles, while low flows tend to 

get poorer ones. This result and the considerations made in paragraph 5.3.4 lead to the 

conclusion that we are quite successful at explaining flow statistics that are more directly 

linked to the climatic input and to the short-term catchment response, while our failure on 

low flows is probably linked to the lack of adequate descriptors to characterize the long-term 

hydrologic response of our catchments.  

 

In chapter 10 we will be using regionalized flow statistics to constrain the regionalization of a 

rainfall-runoff model. In that case we will use a regression + IDW approach (as an example 

of regionalization on a dense network) and a regression without IDW (as an example of 

regionalization on sparser networks). 
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Part 3 – Regionalization of rainfall-runoff models – direct 

methods 

 

 

 

 

 

This part focuses on the regionalization of rainfall-runoff models with direct methods, i.e. 

methods that use the available physiographic, climatic and spatial information to identify 

good donor catchments from which parameter sets are borrowed. This exercise differs from 

the way in which physiographic and climatic information are used when regionalizing flow 

statistics, which is essentially regression-based. 

Chapter 7 deals with a method based exclusively on physiographic similarity; 

Chapter 8 presents two methods (intersection-based and union-based) to combine the benefits 

of spatial proximity and physiographic similarity.  
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7 Physiographic similarity regionalization 

 

 

 

 

 

In this chapter, we explore regionalization methods that are based upon the construction of a 

similarity metric, which is used to select appropriate donor catchments: as seen in section 4.5, 

this is probably the most common regionalization approach for rainfall-runoff models. 

Such metric can be built in several ways using the available physiographic and climatic 

descriptors: here we will present two possible methods, that we will call PCA-based (based 

on a preliminary selection of explanatory variables using PCA) and backwards-sorting (based 

on backwards sorting of explanatory variables). 
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7.1 Introduction 

In this section we will present two methods to build a site similarity measure out of 

physiographic descriptors. 

In any regionalization exercise, the successful use of physiographic information is attractive 

for two main reasons: 

- A physiographic-based site-similarity measure can easily be confronted with one's 

understanding of the hydrological processes, at the opposite of spatial proximity. 

- One would expect that a similarity metric relying on physical attributes would be 

more robust when applied to a scarce network of gauged stations, if compared to 

spatial proximity. This is a reasonable assumption, even though not always verified 

(Oudin et al., 2008). 

 

The construction of a similarity metric based on physiographic measures faces a few main 

issues: 

- The selection of hydrologically relevant descriptors: if a non-relative descriptor is 

used during the construction of the similarity metric, it will at best have a neutral 

effect, and, at worst, a very detrimental one. 

- the ranges of variation and the distribution of observed values can differ significantly 

from one descriptor to another. This poses a problem when one tries to build a metric 

based on such variables. To overcome this problem, several approaches are possible: 

here we will, for both methods, normalize the descriptors so that their mean equals 0 

and their standard deviation equals 1 (an assumption is made that the distributions of 

the observed values have similar shapes) 

- Physiographic descriptors are often correlated between them to some degree. This 

implies that some catchment characteristics might be overemphasized in the similarity 

metric, unless an appropriate weighting/variable selection scheme accounts for this. 

Correlated descriptors also implies that the similarity metric shouldn’t be thought as 

an Euclidean distance, even when it is built as if it was one, unless a set of 

uncorrelated explanatory variables is derived from the correlated descriptors (through 

e.g. Principal Component Analysis). 

7.1.1 Common points of the tested regionalization methods 

It is important that our readers are aware of the general scheme shared by all the tested 

regionalization methods. 
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In all of the following paragraphs, we will test each of our catchments as if they were 

ungauged, in a jack-knife fashion. At the same time, we will suppose that all the remaining 

catchments are known, unless when challenging a method's robustness with the "metrological 

desert" crash-test. 

The point of each of the regionalization methods tested is to select a group of donor 

catchments: these are supposed to be hydrologically similar to the one we treat as ungauged, 

i.e. a parameter set calibrated on one of the donors should give comparable results on the 

ungauged. 

Once a set of donors is chosen, a simulation is run with each of the donor's calibrated 

parameter sets, then the obtained time series of streamflow are averaged: the obtained record 

is the candidate simulation for the pseudo-ungauged catchments and its efficiency will be 

calculated. This procedure is followed instead of the averaging of parameters since Oudin et 

al. (2008) showed, using the same model and a very similar database, that flow-averaging 

gives consistently better performance than parameter-averaging 

For each of the proposed methods, the optimal number of donor catchments is set by using 

the median efficiency obtained on the whole database as a criterion. 

The criterion being used is C2M, a bounded version of the Nash-Sutcliffe efficiency whose 

maximum is 1 and whose minimum is -1, calculated on square-rooted flows. 

 

 
Eq. 7 

 

While representing the same concept of the NSE (a comparison between the square errors 

obtained by a simulation and those obtained by an average of the modeled time series), C2M 

has two practical advantages: 

- it can be averaged (especially useful when the objective is to get "less bad" 

simulations, rather than improve the peak performances)  

- due to the re-scaling effect, higher performances are spread over a broader range of 

values and can be better evaluated. 

See Mathevet et al.(2006) for more details on this criterion. 

 

7.2 Method based on Principal Component Analysis   

We first present a method that we call PCA-based because it does not attempt to judge the 

"hydrological value" of the available physiographic and climatic descriptors when 

constructing the similarity metric. The only treatment that is applied to explanatory variables 
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is Principal Component Analysis, used to ensure that an Euclidean distance can be "properly" 

calculated. 

7.2.1 Preliminary selection of explanatory variables 

This method is characterized by the fact that we didn't try to select the best possible 

descriptors to be used for the regionalization task, but rather to just discard those that are 

clearly not useful. 

The selection criterion was thus built in comparison with a random choice of donor 

catchments, with the following procedure:  

- For each catchment treated as ungauged, ten different catchments were randomly 

chosen from our dataset and used as donors.  

- The calibrated parameter set of each donor was used to run a simulation on the 

pseudo-ungauged catchment. 

- The time series of streamflows obtained with the ten simulations were averaged, and 

an efficiency criterion (C2M on square-rooted flows) was calculated. 

- The procedure was repeated on the whole dataset several times, with different 

initializations of the random selection 

- The average efficiency of all the simulations was retained as the benchmark to 

consider a physiographic descriptor acceptable 

 

Each descriptor was used in turn as a similarity measure. Ten catchments having the closest 

descriptor values to the one treated as ungauged would be used as donors, ten simulations 

would be run and an average time series was obtained. The average efficiency obtained on 

the dataset was then compared to the random benchmark, and the descriptor would be 

discarded if worse than this random benchmark. 

 

As one can see in Table 10, only the land-cover class "fruit" gives results that are worse than 

a random selection of ten donors, and has not been used in the construction of the similarity 

metric described in section 7.2.2. It is interesting to note that this land cover class is only 

found in significant extensions on very few catchments of our dataset, and this alone is a 

good reason for its exclusion: for the many catchments who have a modest or null coverage 

of such a class, it won't provide a reliable indicator for site-similarity of any kind, even 

outside of the context of a hydrological study.   

Another interesting point is the relatively high relevance of topographic descriptors, 

compared to climatic ones. This, put into the perspective of the results obtained for flow 
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statistics, tends to reinforce a belief that model parameters are much less climate-dependent, 

which is quite reassuring. See section 2.3 for details on each physiographic descriptor. 

Table 10: Average efficiencies obtained when using only one physiographic descriptor to define 
site-similarity 

Descriptor Average efficiency 
A 0.385 
Zmax 0.371 
SMin 0.371 
Z_0.6 0.364 
Z_0.4 0.362 
Z_0.9 0.359 
SMax 0.358 
Z_0.7 0.358 
Z_0.2 0.357 
SAv. 0.357 
ZAv. 0.356 
OTHER 0.355 
P 0.354 
S_0.4 0.353 
FOREST 0.353 
Z_0.8 0.353 
S_0.3 0.353 
Z_0.5 0.353 
S_0.1 0.353 
Wind 0.352 
S_0.9 0.352 
S_0.5 0.352 
S_0.6 0.351 
S_0.2 0.350 
Z_0.1 0.350 
HYBRID 0.350 
DD 0.350 
T 0.349 
Z_0.3 0.348 
S_0.7 0.348 
Hum 0.347 
PE 0.347 
URBAN 0.344 
AGRIC. 0.344 
S_0.8 0.343 
Zmin 0.341 
Random Donors 0.322 
FRUIT 0.316 
 

7.2.2 Principal Component Analysis as a tool to overcome the issue of correlated 

descriptors 

Once the unnecessary descriptors were discarded, the issue of correlated descriptors was 

solved using Principal component analysis (PCA). PCA is a well known mathematical 

procedure that uses an orthogonal transformation to convert a set of observations of possibly 
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correlated variables into a set of values of uncorrelated variables called principal components. 

The number of principal components is less than or equal to the number of original variables. 

This transformation is defined in such a way that the first principal component has as high a 

variance as possible (that is, accounts for as much of the variability in the data as possible), 

and each succeeding component in turn has the highest variance possible under the constraint 

that it be orthogonal to (uncorrelated with) the preceding components. 

 

The first seven principal components (explaining 80% of the descriptors’ variance) have been 

derived from the original set of descriptors and used to build a similarity metric. Since the 

principal components are orthogonal by definition, one can use them to calculate an 

Euclidean distance between data points (in our case, an ungauged catchment and a potential 

donor)  

 

 

 
Eq. 8 

 

Where the uipc , is the i-th principal component for the ungauged catchment we are interested 

in, and cipc ,  is the i-th principal component for candidate donor catchment c 

7.2.3 Results 

Figure 15 shows the general performance of the PCA-based regionalization. The top left chart 

shows the median C2M efficiency on square-rooted flows obtained when using different 

numbers of donors. It appears that the optimal number of donors for such a method is six, and 

in this case the median C2M equals 0.56 (corresponding to NSE=0.72). 

The second chart shows the complete distribution of efficiencies obtained on our database 

catchments, when using six donors and the PCA-based method (black solid line). Only 

positive efficiencies are shown.  

Two grey lines are added to the plot as benchmarks. On the rightmost side we have the 

performance of a calibrated model (solid line): it represents the performance of an ideal (non 

existent) regionalization method that would be able to totally substitute the information 

contained in streamflow time series. 

On the other side we have a "minimum demand" benchmark, represented by a random 

selection of ten donors (dashed line): it represents a method that is truly blind to the ungauged 

catchment considered. 
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Figure 15: PCA-based Regionalization performances. Top left, median efficiency per number of 
donor catchments used. Top right, distribution of efficiencies compared to a random selection of 
donors (dashed line) and calibrated model (solid grey line). Bottom left, performance in a 
"metrological desert" situation. 

 

These benchmarks are extreme and all regionalization method should fall between them: 

nevertheless, they should help judging regionalization quality. 

Figure 15 shows that there is a large room for progress for the regionalization approach, since 

its performances are intermediary to the two benchmarks. Besides, the approach does not 

show a remarkable robustness: excluding donors in a 100 km radius leads to a strong decrease 

in efficiency (near the efficiency of random donors), meaning by the way that the similarity 

approach tends to select geographically close donor catchments.  

Last, Figure 16 provides an outlook at the shape of the hydrographs obtained in calibration 

and with the regionalization model. 
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Figure 16: Time-series of observed, regionalized and simulated (with prior calibration) 
streamflows on three example catchments, of good (H301010) "median" (K2363010) and poor 
(H6402030) performances 
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7.3 Backwards sorting method 

In this section we present a backwards-sorting method for the construction of a similarity 

metric. In this case, the available explanatory variables undergo a "backwards sorting" 

selection, aimed at retaining only the most "hydrologically meaningful" physiographic and 

climatic descriptors. 

7.3.1 Variable selection algorithm 

In this method, the selection of physical descriptors was made on the basis of the quality of 

the obtained regionalization. 

 

As a first step, available descriptors are normalized: 

 

 
Eq. 9 

 

Where jids ,  is the normalized value of descriptor i for catchment j, jid ,  is the un-normalized 

value, id  is the average of id over the dataset, and iσ  is its standard deviation. 

A "pseudodistance" is then built using all n available descriptors, as if they were orthogonal: 

 

 
Eq. 10 

 

where uids , is descriptor i for the ungauged catchment u, and cids , is descriptor I for the 

candidate donor catchment c. 

A regionalization procedure using the ten most similar candidate donors is run and its average 

efficiency is calculated. 

The second step involves running the same procedure, this time not using one of the 

descriptors. This is repeated until all combinations of n-1 descriptors have been tested, and 

the one giving the best performances is kept as the new descriptor list. 

The whole procedure is iterated until we only have one descriptor left. At this point, if at each 

iteration the retained combination of n-m descriptors was noted along with its average 

efficiency, the selection of the optimal pool of physiographic descriptor is trivial. 

 

Table 11 shows a list of the descriptors discarded at each iteration, and the average efficiency 

obtained with the remaining ones. As one can see, the maximum efficiency has been reached 
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at the 11th iteration, so the retained similarity metric uses the 26 remaining descriptors2 (the 

descriptors in italic characters have been removed from the list). 

 

Table 11: List of discarded descriptors at each iteration 

Iteration 
Discarded 
descriptor average C2M 

1 Z_0.9 0.4675 
2 OTHER 0.4683 
3 SMax 0.4694 
4 AGRIC. 0.4701 
5 Z_0.2 0.4706 
6 S_0.1 0.4707 
7 S_0.6 0.4708 
8 HYBRID 0.4715 
9 DD 0.4725 

10 FRUIT 0.4729 

11 Z_0.1 0.4730 
12 S_0.7 0.4721 
13 S_0.3 0.4724 
14 S_0.2 0.4723 
15 Z_0.6 0.4720 
16 Z_0.3 0.4718 
17 S_0.4 0.4722 
18 Z_0.4 0.4728 
19 Z_0.5 0.4727 
20 PE 0.4722 
21 Z_0.7 0.4715 
22 T 0.4720 
23 ZAv. 0.4710 
24 Zmax 0.4705 
25 S_0.8 0.4692 
26 S_0.5 0.4684 
27 URBAN 0.4652 
28 SMin 0.4652 
29 FOREST 0.4638 
30 Z_0.8 0.4623 
31 Wind 0.4531 
32 DD 0.4435 
33 P 0.4269 
34 S_0.9 0.4118 
35 Zmin 0.3935 
36 Hum 0.3854 
37 A 0.3494 

7.3.2 Results 

Figure 17 summarizes the performances of the presented regionalization method with the 

same scheme used in Figure 15. 

                                                 

2 It should be noted that nothing ensures that the 26 selected descriptors are uncorrelated. If  they aren’t, the resulting dissimilarity measure 
can’t be considered as an Euclidean distance. 
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In this case, the optimal number of donor catchments is 7. The distribution of the efficiencies 

is slightly, yet consistently better than the one obtained with the PCA-based method, with a 

median C2M of 0.57 (NSE=0.73) and also a slight advantage in the “metrological desert” 

robustness test.   

 

Figure 17: Backwards-sorting Regionalization performances. Top left, median efficiency per 
number of donor catchments used. Top right, distribution of efficiencies compared to a random 
selection of donors (dashed line) and calibrated model (solid grey line). Bottom left, 
performance in a "metrological desert" situation. 

 

 

 

 

 

 



 

 - 102 -  

 

 

 

 

 

 

 

 

 

 

 

 



 

 - 103 -  

 

8 Joining spatial proximity and physiographic similar ity 

 

 

 

 

 

In this chapter, we present and evaluate two approaches methods allowing a joint use of 

spatial proximity and physiographic similarity: 

� the intersection-based method, based on the assumption that good donor catchments 

are likely to be, at the same time, similar and geographically close to the ungauged 

catchment of interest. Thus, the best donors will belong to the intersection of the two 

ensembles ;  

� the union-based method, based on the assumption that the two approaches may 

identify good donors independently. Thus donors will be best identified by the union 

of the two ensembles. 
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8.1 Introduction 

In the previous sections we covered two regionalization methods based on pure 

physiographic similarity. As already said, our attention has been focused on such methods 

first because of their expected robustness.  

Another reason why an hydrologist should appreciate physical similarity more than spatial 

proximity is that it is less "black box": it does not really provide any outlook of the 

hydrological processes that dominate the catchments of a certain region, but at least it gives a 

possibility for a careful, indirect, rough interpretation.  

 

However, spatial proximity should not totally be dismissed. On one side, there are situations 

(for instance very dense gauging networks) where its performances might be superior to those 

of approaches relying on physiographic measures. On the other, as Figure 18 shows, it is to 

some extent complementary to physiographic similarity.  

In Figure 18 we can see a grey dashed line representing the performances of a pure spatial 

proximity regionalization on our dataset (using four donors), a black dashed line representing 

the performance of the backwards-sorting physiographic similarity covered in section 7.3, 

and a black solid line. Such black line represent an ideal (non-existent) method that would, 

for each ungauged catchment, be able to decide whether in that particular case spatial 

proximity would give a more accurate guess than physiographic similarity, or vice-versa. Its 

performances are clearly superior to the other two methods used alone. Of course, the reader 

should be aware that this example was constructed by "cheating" and is only used to show the 

complementarity of the two original regionalization approaches. 

 

While we do not expect that a realistic method could come close to the performances of the 

"ideal" case, we think that Figure 18 clearly shows the interest of investigating methods that 

combine some degree of physiographic similarity (as a way to ensure robustness and for its 

"informative" value) with some degree of spatial proximity (whose only value is an eventual 

increase in performance).  The next paragraphs will cover two simple propositions of how 

such a method could be constructed. 
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Figure 18: Performances of spatial proximity and physiographic similarity methods (dashed 
grey and dashed black lines) confronted with the performance of an ideal method perfectly 
combining the strenghts of the two approaches (solid black line) 

8.2 An intersection-based method 

8.2.1 description 

The idea behind this method is that good donor catchments are likely to be, at the same time, 

similar and geographically close to the ungaged we are looking at.  

To select donors that are close and similar, we proceeded as follows: 

- The number of donors to be used was set. Let us say for the sake of this example that 

we wanted to use 10 catchments. 

- Each time we considered a catchment as ungauged, the remaining ones were ranked in 

two lists of donors. The first was ranked according to geographical distance, the 

second was ranked for physiographic similarity (as in the backwards-sorting method 

shown in section  7.3 

- We looked at the closest 10 catchments and at the most similar 10 catchments. If these 

two groups contained the same 10 stations, these would be the retained donors. 

- In case we didn't have the same 10 catchments in the two groups, we would 

progressively increase the size of the two pools of candidates: for instance, the 11 

closest one and the 11 most similar. 
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- We would look at the intersection of the two pooling groups (i.e. catchments 

appearing both in the group of the closest and in the group of the most similar ones). 

If 10 catchments were to be found in such an intersection, we would stop and retain 

these 10. If not, we would keep increasing the sizes of the two candidate groups until 

10 candidates could be found. 

8.2.2 Results 

Figure 19 is a summary of the performance of the intersection regionalization method. 

The optimal number of donors is six, with which a median C2M of 0.58 (equivalent to a NSE 

of 0.73) is obtained.  

The performance gain, compared to pure physiographic similarity, is quite small (from 0.574 

to 0.578). However, we actually notice a performance decrease in the "metrological desert" 

robustness test. While this result should be expected as an effect of bringing spatial proximity 

into the regionalization method, it is quite strong (pure similarity already works better when 

the closest catchment is more than 20 km away) and makes the proposed "intersection" 

method a poor choice. 
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Figure 19: Combining spatial proximity and physical similarity, results of the intersection 
regionalization method. Top left, median efficiency per number of donor catchments used. Top 
right, distribution of efficiencies compared to a random selection of donors (dashed line) and 
calibrated model (solid grey line). Bottom left, performance in a "metrological desert" situation. 

 

 

 

8.3 A union-based method 

8.3.1 Description 

This approach is based on the idea that –for our dataset- pure spatial proximity and pure 

physiographic similarity will identify a certain number of "good" donor catchments when 

used alone. 
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Pure spatial proximity works best (on our database) with four donor catchments, backwards-

sorting physiographic similarity works best with 11 donors. We then simply pasted the two 

donor lists, obtaining a group of 15 donors. Notice that, when a catchment is both in the 4 

closest and in the 11 most similars, it is counted twice. 

8.3.2 Results 

Figure 20 shows two charts about the performance of the union-based regionalization 

method: the distribution of the efficiencies obtained on the catchments we tested as 

ungauged, and the median performance in the "metrological desert" robustness test. In 

comparison to the previously treated proposals, we did not test different numbers of donors. 

The median performance obtained is 0.58 in C2M, or an NSE of 0.74. This result is only 

marginally better than the intersection-based regionalization: however, the robustness of this 

approach seems to be much more satisfying. Pure physiographic similarity would only have a 

clear advantage on catchments who don't have any donor closer than 180 km, while when at 

least one donor closer than 100 km is available, the union-based method is superior. 
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Figure 20: Combining spatial proximity and physical similarity, results of the union 
regionalization method. Left, distribution of efficiencies compared to a random selection of 
donors (dashed line) and calibrated model (solid grey line). Right, performance in a 
"metrological desert" situation. 
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8.4 Comparison of the tested regionalization approaches 

Figure 21 and Figure 22 allow a comparison of the performances of the tested direct 

regionalization approaches.  All approaches perform very similarly for the better modelled 

catchments, with the most noticeable differences being concentrated between empirical 

frequencies 0.1 and 0.4.   

Overall the "union" combination of spatial proximity and physical similarity performs best, 

even if it is not very far from the other three tested methods, and constitutes a marginal 

improvement over a backwards-sorting based similarity approach, despite a theoretically 

much bigger margin for improvement.  

 

Figure 21: Distribution of the performances of the tested direct regionalizations, compared to 
two benchmarks: random donor selection (dotted grey line), calibrated model (solid grey line) 
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All methods appear to have similar robustness, with the possible exception of the 

"intersection" one (which probably relies too much on spatial proximity). In all cases, a 

noticeable improvement over spatial proximity can be noticed. 

 

Figure 22: Comparison of the performances of the tested direct regionalizations under the 
"metrological desert" robustness test 
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9 Sensitivity analysis of regionalization methods: ho w do 
they react to the lack of similar catchments? 

 

 

 

 

 

 

In this chapter, we will present three assessments of the robustness of the proposed 

regionalization methods, based on a simple but requiring test called the “metrological desert”. 

This test is based on the elimination from the donor list of those catchments which are 

geographically closest or most similar to the receiver catchment. 
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9.1 Introduction 

In this chapter we will resume the results of the “metrological desert” test introduced in 

section 3.3, and propose its extension to the elimination of physiographically similar 

catchments. 

9.1.1 Results of the elimination neighboring donors 

Figure 23 shows the sensitivity of the four regionalization approaches presented in chapters 7 

and 8 to the elimination of the closest donors. For each approach, three lines show how the 

values of the 0.9 quantile, median, and 0.1 quantile of the performance distribution decrease.  

Interestingly, the differences in regionalization robustness seem to be much greater on the 

worse-modeled catchments than on the rest of the distribution: on the 0.1 quantile, it is clear 

that the “Intersection” approach (which has a strongest element of spatial proximity among 

the tested alternatives) is by far the less robust, while the remaining three methods have 

similar performances (with the backwards-sorting method performing less badly). Looking at 

the median performances, the relative lack of robustness of the “Intersection” approach is 

confirmed, even if the differences between regionalization methods are much smaller, to the 

point that the remaining three approaches can be considered to be equivalent. Finally, the 0.9 

quantile shows a slight disadvantage of the PCA-based similarity approach.  
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Figure 23: Performances of several regionalization approaches in a "metrological desert" 
situation. Upper dashed line: 0.9 quantile of the performance distribution. Continuous line: 
median. Lower dashed line: 0.1 quantile 

Overall, we argue that the most robust approaches when facing a lack of close donors are the 

one based on backwards-sorting similarity and the “union” similarity/proximity hybrid, but it 

is not possible to detect a significant difference between the two. 
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9.2 Sensitivity of regionalization methods to the lack of similar catchments 
 

In analogy with the “metrological desert” approach, we tested the sensitivity of 

regionalization methods to the removal from the dataset of donors whose characteristics were 

closest to the ones of the receiver catchment. This test was repeated individually for each 

physiographic descriptor, calculating the difference between the receiver’s and the potential 

donors’ values and eliminating the donors who fell below a certain threshold. Although this 

procedure is quite redundant, we think that excluding donors on the basis of a chosen 

similarity metric wouldn’t yield “neutral” results (i.e. we expect that methods which use the 

closest similarity metrics would be the most affected). 

The thresholds to be tested have been determined considering that most physiographic 

descriptors are roughly normally distributed. Consequently, we decided to set the maximum 

threshold to be tested for each physiographic characteristic to half of the descriptor’s standard 

deviation, as this would eliminate nearly 40% of the donors for an average case, and we 

thought that it was not necessary to test an even harder constraint. 

9.2.1 Results 

For ease of reading, results will be presented in graphic form in appendix 14, while this 

paragraph will provide an overall review. 

The overall sensitivity to the lack of similar donors seems to be comparable to what is 

observed when we excluded geographical neighbours (or even lower if one considers that in 

that case we were excluding about 20% of the donors instead of 40%). Other similarities can 

be found if one notices that the sensitivity of the median and lower quantiles of the 

performance distribution seems to be greater than for the upper quantiles, both in terms of 

average performance decrease and in terms of difference between one regionalization strategy 

and another. 

Interesting trends can be observed if one considers the performance of the “intersection” 

method, which is the one containing the strongest compromise with spatial proximity, in 

comparison with the other approaches. This method seems to have comparable, or even 

slightly better results when donors are eliminated on the basis of climatic descriptors and of 

drainage density; on the other hand its performances are generally inferior when the 

sensitivity to altitude, slope, and some land cover classes quantiles is considered. In our 

opinion, this might indicate that altitude and slope and some kinds of land cover are more 

spatially correlated than other descriptors, and as a consequence those donors who are similar 
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when considering these properties are more likely to be geographically close to the receiver 

catchment. 

Catchment area constitute an exception to the above described scenario, as the 

regionalization’s sensitivity to the lack of donors sharing similar characteristics seemed to be 

higher for these descriptors than for the rest. Catchment area appeared to be the most 

significant among the available descriptors when constructing hydrological similarity 

measures, so the high sensitivity to the removal of donors having a similar size to the receiver 

is no surprise. Furthermore, its distribution over our dataset is log-normal, which means that 

on average, more than 40% of the available donors are eliminated when using the 0.5 σ 

threshold. A similar behaviour is observed when excluding donors which share a similar 

drainage density with the receiver: in this case, one could invoke again the strong spatial 

organization of drainage density, since DD did not appear as a very significant descriptor 

when constructing hydrological similarity measures. 

9.3 Sensitivity of regionalization methods to thresholds of model efficiency 
 

In this section we wish to examine the reaction of regionalization methods to the lack of well-

modelled donors: how important are they to obtain good regionalization results? Similarly to 

the procedures applied in the rest of this chapter, we will exclude from the donor list 

catchments whose calibration efficiency exceeds a certain threshold, which is moved lower 

and lower between C2M=1 (perfect simulation) and 0.5 (poor, but not catastrophic 

simulation). 

9.3.1 Results 

As it can be seen in Figure 24, the negative impact of the lack of well-modelled donors is 

equally extreme for all regionalization methods tested, to the point that in our opinion 

discussing the relative merits of each of them in such a context does not make sense. 

For all methods, the decrease in performance seem to be concentrated on the “medianly” and 

worse regionalized catchments, especially when donors having calibrated a performance 

between C2M=0.9 and C2M=0.65 are excluded. These boundaries contain roughly 60% of 

the available donors, as only 1.5% of the catchments in our dataset yield a calibrated 

efficiency higher than 0.9, and 38% have a calibrated efficiency lower than 0.65. But in 

comparison, randomly removing 60% of our donors would have a much milder impact, as 

suggested in Figure 26, which leads us to conclude that the presence of a majority of well-

modeled catchments in the donor list is required to obtain satisfying regionalization results 
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for most ungauged catchments. The impact on the upper quantiles of the regionalized 

performance distribution is still very strong but less extreme: however, our hypothesis is that 

these few “lucky” cases can’t be expected to yield acceptable results for the right reasons.  

The observations made in this test can be corroborated with the results of a similar 

experience, illustrated in Figure 25. In this case, the worse modeled catchments, up to an 

efficiency threshold, are excluded from the regionalization of the GR4J. This operation leads 

to a mild decrease of the median performances for all regionalization methods tested, until a 

threshold corresponding to C2M=0.5 is reached: then, the regionalization performances 

decrease steeply as some of the better-modeled donors are excluded. These results are 

consistent with a similar test exposed by Oudin et al. (2008), with the difference that in that 

case the exclusion of badly modeled donors initially led to a mild increase of the median 

regionalization performances, and that the steep performance decrease occurred when a 

threshold of C2M=0.67 is reached. 

The upper and lower quantiles of the regionalization’s performance distribution also confirm 

the general trend of performance decrease when badly modeled donors are excluded, 

although with some differences: the upper quantiles do not seem affected until donors having 

an efficiency greater than C2M=0.8 are excluded, while the lower quantiles are equally 

affected throughout the whole test. 
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Figure 24: Sensitivity of several regionalization approaches to the lack of well-modeled donors. 
Upper dashed line: 0.9 quantile of the performance distribution. Continuous line: median. 
Lower dashed line: 0.1 quantile 
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Figure 25: Sensitivity of several regionalization approaches to the exclusion of badly modeled 
donors. Upper dashed line: 0.9 quantile of the performance distribution. Continuous line: 
median. Lower dashed line: 0.1 quantile 
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Part 4 – Regionalization of rainfall-runoff models – the indirect 

path 

 

 

 

 

 

In this part, we present the results of what we have chosen to call the indirect path to 

regionalizing a hydrological model. We see the problem of model parameterization on an 

ungaged basin as a problem of choosing one or several parameter sets in a library. The 

originality of the method presented here lies in the fact that we rely on a previously 

implemented regionalization of statistical flow values (i.e. flow quantiles) to constrain the 

choice of the parameters from the library: only those parameter sets allowing to best 

reproduce the regionalized flow quantiles will be retained for rainfall-runoff simulation.  
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10 Direct and indirect regionalization 

 

 

 

 

 

 

In this chapter, we first justify the reasons why we thought an indirect approach could be 

advantageous, in relation with the existing literature on the subject. We then identify the 

principal issues that we’d  like to explore concerning the subject of indirect regionalization, 

give the details of the regionalization procedure we used, and comment the obtained results. 
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10.1 Introduction 
When estimating model parameters at an ungauged location, several approaches are possible. 

The two most common approaches are: 

 

- Fitting a regression between model parameters (calibrated at gauged catchments) and 

catchment physiographic descriptors; 

- Transferring (or interpolating) model parameters from proxy catchments, i.e. 

catchments that can be close in the geographic space (spatial proximity) or in a 

geographic-physiographic space (physical similarity). 

 

These two methods have one point in common: they try to regionalize the model parameters 

in a single step. We could call them direct regionalization methods. 

 

On the other hand, some authors recently advocated an indirect regionalization method. This 

method consists in first regionalizing flow statistics that synthetically describe the hydrologic 

response of the ungauged catchment. In a second time, parameter sets are chosen according to 

their ability to reproduce the behaviour outlined by the regionalized statistics. Throughout 

this report, we will refer to such a method as an indirect regionalization. 

10.1.1 Why could an indirect regionalization be advantageous? 

Direct regionalization methods face two kinds of difficulties: 

 

- calibrated model parameters usually show little or no correlation with physiographic 

descriptors: as a consequence, regressions usually yield poor results; 

- approaches based on parameter transfer from proxy catchments perform better than 

regressions, but are less robust than them in data-sparse situations. Their performance 

is more affected by the presence (or absence) of "good donors" in the dataset, for the 

ungauged catchment considered. 

 

In comparison, the regionalization of flow statistics seems to be an easier task. As a 

consequence, the idea lying behind indirect regionalization is that if one could successfully 

identify efficient parameter sets with the use of flow statistics, such a method could be used 

later to regionalize model parameters. 
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The overall scope of this chapter is to test this assumption, i.e. to outline if and under which 

conditions an indirect regionalization approach could be a better choice than direct ones. 

10.2 Review of the relevant scientific literature 

10.2.1 How does the work presented in this chapter relate to the existing literature? 

In section 4.6, we have mentioned a few studies proposing indirect regionalization methods. 

All provide similar frameworks for selecting model parameters based on their ability to 

reproduce some flow response statistics, and generally agree on the reasons for which such a 

procedure could be preferable over a direct transfer of model parameters. 

 

Another common point is that all of the presented methods select a range of feasible 

parameter sets rather than one set: however, this choice somehow limits the possibility of a 

comparison with traditional direct regionalization methods. Also concerning the assessment 

of indirect regionalization's performance, it is not clear if such methods can perform well 

when evaluated with traditional criteria (as the Nash and Sutcliffe efficiency) or if their 

interest is the consequence of a change of paradigm in model evaluation. In this regard, we 

feel that the assessment of indirect regionalization's performances in a "traditional" 

framework (one streamflow simulation, a single-objective evaluation criterion based on the 

comparison of simulated and observed hydrographs) is required as a preliminary. 

 

Another question is raised by a slight disagreement in the use of indirect regionalization in 

the four papers: while Yadav et al. (2007) and Westerberg et al.(2010) approach it as a form 

of calibration, and do not couple it with other information, Castiglioni et al. (2010) and 

Bardossy (2007) explicitly or implicitly advocate its use in combination with other methods 

to constrain the feasible parameter space. Do indirect regionalization methods perform 

acceptably on their own, or should they be rather considered as an additional criterion 

in a regionalization method combining different approaches? 

10.3 Issues of concern for implementing an indirect regionalization scheme 
Here, we list the main issues which need to be addressed when planning an indirect 

regionalization scheme. The questions listed here are further dealt with in section 10.5. 

10.3.1 How does the first level of regionalization affect the second? 

Obviously, since the indirect regionalization comprises two steps, the accuracy of the first 

step will have an impact on the efficiency of the overall scheme.  
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We believe that, when evaluating the performances of an indirect regionalization scheme, this 

point should not be overlooked: we should not do as if we were always capable of estimating 

flow statistics with small errors, even if this may indeed be the case for some catchments. In 

this chapter, we will evaluate the impact of two different flow statistics’ regionalization 

approaches on the overall performance of a model at ungauged locations. A comparison with 

the ideal case in which flow statistics could be estimated without errors will also be provided. 

10.3.2 How to constrain the initial choice of possible parameter sets? 

Looking at the literature, one can see a remarkable difference in how an indirect 

regionalization is used to identify candidate parameter sets: 

 

� In the case of Yadav et al. (2007), candidate parameter sets are picked from a broad 

range of possible values, whose limits are set a priori and should reflect the expected 

range of variation of each model parameter over the whole study area. 

� On the contrary, Bardossy (2007) starts from a much narrower choice of possible 

parameter sets: the criterion used is that candidate sets should perform acceptably on a 

selected “donor” catchment, which is supposed to be hydrologically similar to the 

ungauged catchment of interest. 

 

In this chapter we will, as a first step, test the proposed indirect regionalization using all the 

optimal parameter sets of the catchments considered as gauged. We think this is the most 

challenging situation for such a method, practically equivalent (given the number of 

catchments in our database) to a case where parameter sets would be generated from an a 

priori distribution of "likely" values. At the same time, it is the only test we can think of that 

would address the performances of such indirect regionalization independently of the 

criterion used to further constraint the parameter choice. 

 

In a second step, we will try to constrain the choice of candidate parameter sets with an 

additional criterion based on spatial proximity, similarly to what was done in sections 6 and 

8, as an example of how the combination of different regionalization approaches can improve 

performance. 

 

10.3.3 Can such a method be robust? 

As a final point we would like to address the robustness of the indirect regionalization 

method, i.e. how its performance is affected by the quality and quantity of available data. 
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More specifically, since we will work on data from a very spatially-dense gauging network, 

our attention will be focused on what happens when the density of donors is reduced 

10.4 Method 

10.4.1 General choices 

� Context 
We evaluate the performance of an indirect regionalization method when applied in the 

following context: 

 

− A lumped four-parameter model (GR4J) is used; 

− We assume that an ungauged catchment is one for which we do not have streamflow 

measurements However,  physiographic descriptors as well as precipitation input time 

series are available; 

− The objective of the regionalization is to produce one streamflow time series; 

− The efficiency of each simulation is evaluated as C2M on square-rooted flows; 

− Flow statistics are regionalized using two simple methods: a regression between 

statistics and catchment descriptors, fitted on all available catchments, and a 

regression whose residuals are interpolated with inverse distance weighting (IDW), 

i.e. the approaches developed in chapters 5 and 6 are used.  

 

� Flow statistics considered 

For all of the available catchments, we calculated the following flow statistics, on records 

concerning years between 1986 and 2005: 

− Average yearly runoff; 

− Percentiles of the flow duration curve:  

we considered eleven quantiles of the FDC, and will refer to these values according to the 

percentage of exceedance (10Q , for instance, is the value that is exceeded 10% of the time). 

With this nomenclature, we have: 5Q , 10Q , 20Q ,… 90Q , 95Q ; 

− Lag:  

The lag time of the catchment, estimated as the time shift for which rainfall and runoff 

records show the highest correlation. For instance, if the runoff record appears to be mostly 

correlated with the rainfall of two days before, we will have a two days lag. 

 

� Parameter sets: initial choice and evaluation 
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In this chapter, we initially considered a broad library of possible parameter sets for each 

catchment treated as ungauged. This library contains the parameter sets that where calibrated 

on all the remaining stations in the dataset. 

 

Each parameter set has been evaluated according to the following scheme: 

− A simulation is run with the parameter set under evaluation and the rainfall record of 
the ungauged catchment considered; 

− The flow statistics mentioned above are calculated on the obtained simulation: we will 

refer to them as S
~

; 

− S
~

 are confronted with the regionalized estimation Ŝ : for each statistic, the following 
error measure is calculated 

 

i

ii
i

SS
err

σ
ˆ~ −=  

 

Eq. 11 

 

where iσ is the standard deviation of the observed values (this is equivalent to 

working on normalized variables). 

 

− A penalty score is calculated, as  sum of all errors: 
 

∑= ierrp  
Eq. 12 

 

− The available parameter sets are ranked according to their penalty score 
 

At this point, one can pick the best n parameter sets, run a simulation for each of them with 

the ungauged's rainfall record, and average such simulations into a single time series. The 

number n is specific to the dataset and to the regionalization method uses: for this reason, we 

will determine its optimal value following a jack-knife procedure 

 

A calibrated penalty score, where the penalty score would be a weighted average of the errors 

on each statistic, was also tested. The weights have been determined by a jack-knife 

calibration. Although this technique did slightly improve the regionalization performance, the 

increase is modest and apparently specific to the number of parameter sets one wants to use 

(e.g. weights calibrated to select one parameter set do not offer an advantage when one wants 

to select ten parameter sets). As we want to focus on the generalities of the indirect method, 
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and particularly on the influence of the first-step regionalization on its outcome, we will not 

cover the calibration of a weighted penalty score in greater detail. 

10.4.2 Criterion used to further constrain the choice of parameter sets 

As outlined in section 10.3.2, after evaluating the ability of regionalized flow statistics to 

identify efficient parameter sets out of a broad range of possible values, we will test it on a 

narrower "library" of possible values, built using an additional constraint, based on spatial 

proximity.  

This choice has been based on the fact that the gauging network we work with is particularly 

spatially-dense, and reflects a scheme already used in other parts of this work: using spatial 

proximity as a "last resource" to improve the performances of a regionalization method. 

10.4.3 Three benchmark comparisons. 

In order to help evaluating our results, we provide the comparison with two benchmark 

approaches:  

 

- random selection: ten parameter sets are randomly selected from the library of 

candidate parameter sets. The resulting flow time-series are averaged. This 

benchmark indicates the lower limit of acceptable performance: any regionalization 

method should perform better than this (hopefully much better). 

- "spatial proximity": we considered the optimal sets of the first three neighbors, and 

averaged the time series. This method is quite unsophisticated, lacks robustness, but 

performs very well when the distance between the ungauged catchment of interest and 

the next gauged basins is short enough, as in our case. We would like other 

regionalization methods to have similar (or better) performances on a full-density 

network and to show better robustness when the density is reduced.  

- "ideal case": we will use the calibrated model's performance. For a large dataset such 

as the one we are working with, it is practically equivalent to a method that could 

choose the best possible parameter set among those calibrated on the gauged 

catchments. On a smaller dataset, there would be a more noticeable difference. 

 

10.5 Discussion of results 
In this section, we will have a look at how the proposed indirect regionalization method 

performed. The results will be presented in the following order: we will address successively 

the number of donors to be retained, the impact of the initial regression's accuracy, the 
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options for further constraining the choice of the parameter sets, and the dependency of the 

results on donor stations density. 

10.5.1 Number of parameter sets to be retained 

Figure 26 shows how the performance of the proposed indirect regionalization varies when 

selecting different numbers of donors. Three cases are shown, corresponding to two different 

first-step regionalizations of the flow statistics, and a "cheat" case where we supposed that 

one could regionalize flow statistics with no errors.  

The most remarkable behavior showed by the three cases is the lack of a significant 

performance decrease when selecting many donors, although in the "cheat" case we do have a 

slight decrease if more than 30 donors are selected. This result is rather surprising, because 

we would expect that only those parameter sets which allow reproducing best the flow 

statistics should contribute to a good simulation, while after a while, the contribution of the 

most different parameter sets should degrade the performance of the regionalization 

approach. 

During the rest of our discussion, we will show results obtained with 50 donors, for all 

methods (this is an arbitrary choice). 

 

Figure 26: Optimal number of donors for an indirect regionalization scheme. Black line: 
statistics regionalized with a regression and an IDW interpolation of the residuals. Grey dashed 

line: statistics regionalized using a regression. Grey dotted line: "true" statistics (cheat) 

 



 

 - 131 -  

10.5.2 Impact of statistics' regionalization quality on the following regionalization of RR 
model parameter sets 

In order to assess the impact of the initial regionalization's accuracy on the overall results, we 

followed the indirect regionalization procedure described in section 10.4 with two kinds of 

flow statistics' regionalizations: a nation-wide regression and a regression coupled with IDW 

interpolation of the residuals. 

 

Figure 27 shows the results obtained with flow statistics estimated with a plain regression 

approach (i.e. excluding regionalization of residuals). In this case, the indirect regionalization 

cannot reach the efficiency of the spatial proximity benchmark comparison. The obtained 

median efficiency is 0.51 if expressed in C2M, equivalent to a NSE of 0.68 

This result is quite disappointing since it seems that the regionalization approach does not 

benefit from the information on flow statistics. 

To assess whether this result is due to a lack of predictive efficiency of the approach used to 

regionalize flow statistics, we also tested the more refined approach, i.e. using IDW 

interpolation of the residuals. 

 

The results are presented in Figure 28: although there is a visible  improvement, the spatial 

proximity benchmark approach still performs better. The two methods have roughly the same 

performance for the better-modeled catchments, but the spatial proximity approach is still 

superior for the worse modeled ones. 

The median efficiency obtained in this case is 0.55 expressed as C2M, corresponding to a 

NSE of 0.71 
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Figure 27: Performance of the proposed "plain regression approach". The black line presents 
the results obtained with flow statistics obtained through a "plain regression approach", 
confronted with three benchmark comparisons: random donor (dotted grey), spatial proximity 
(dashed grey) and calibrated model (solid grey) 

 

Figure 28: Performance of the proposed "regression + residuals interpolation". The black line 
presents the results obtained with flow statistics obtained through a regression approach 
combined with an IDW-based interpolation of residuals. It is confronted with three benchmark 
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comparisons: random donor (dotted grey), spatial proximity (dashed grey) and calibrated 
model (solid grey) 

 

At this stage, the reasons of the failure of the indirect regionalization approaches are not clear 

since it may be attributable to either the fact that the “hydrological similarity” based on flow 

statistics does not match the “parametric similarity”, or the fact that the performance of the 

regionalization technique for flow statistics is too low, which does not allow to identify truly 

“hydrologically” similar catchments. 

 

With the experiment presented in Figure 29, our aim is to estimate the maximum possible 

margin of improvement, if only we could estimate perfectly the flow statistics at the 

ungauged location. Of course, this is impossible, this is why we consider this method as a 

"cheat". The purpose of such a comparison is to show what margin of improvement can be 

filled just by improving the first-step regionalization of flow statistics over the two 

techniques we used.  

 

Obviously, it is clear that one could eventually do much better than pure spatial proximity, 

getting very close to the efficiency of the calibrated model (median C2M=0.66, NSE=0.80). 

These results show that the level of predictability of flow statistics, though apparently 

satisfying, is too low to help the regionalization procedures. Consequently, the indirect 

regionalization approach might be improved if regionalization of flow statistics is. 

 

However, one can also wonder at this stage if the efforts should rather be put on direct 

regionalization approaches: note that the performances of an indirect approach with 

“perfectly regionalized” statistics are still far from those of a calibration performed directly 

against the performance criterion, and also from those of a “cheating” approach that chooses 

(a posteriori) the most efficient parameter set among those calibrated for the database 

catchments, excluding the one that was calibrated for the one considered as receiver (see 

Figure 30). This last result confirms that similarity based on the reproduction of flow 

statistics and similarity based on model parameters do not match very well, as both 

hypothetical methods use information from the receiver’s flow record and choose among the 

same parameter sets. 
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Figure 29: Performance of  an ideal case where the flow statistics could be regionalized with no 
errors (black dashed line). It is confronted with three benchmark comparisons: random donor 
(dotted grey), spatial proximity (dashed grey) and calibrated model (solid grey) 

 

Incidentally, one can also consider the reproduction of statistic flow signatures as an 

alternative calibration criterion, as done by Westerberg et al. (2010): in this case, further 

analysis would be needed to assess for which applications it produces desirable simulations, 

and for which others it does not. 
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Figure 30: Performance of  an ideal case where the flow statistics could be regionalized with no 
errors (black solid line). It is confronted with two benchmark comparisons: calibrated model 
(grey solid line) and a “cheating” method that selects a-posteriori the best possible donor among 
the catchments available in the database (grey dashed line). 

10.5.3 Could it be advantageous to constrain the choice of parameter sets with an 
additional criterion? 

One of the issues that this section aims to address is whether an indirect regionalization 

approach can give an acceptable performance when used alone, i.e. when making a selection 

out of a broad range of possible parameter sets, or whether it is necessary to combine it with 

other ways of constraining their choice. For this purpose, as explained in paragraph 10.4.2, 

we employed a constraint based on spatial proximity: we initially select a pool of n closest 

neighbours as donors, we evaluate them with the described indirect regionalization procedure, 

and finally consider only half of them (as an arbitrary choice). In the end, the best result 

seems to be obtained when considering the best 5 donors out of the closest 10. 

 

Figure 5 shows the results obtained in this case: finally, the selection based on flow statistics 

offers a slight but quite consistent improvement over the closest neighbor (median 

C2M=0.59, NSE=0.74). It is interesting to notice that the improvement seems to be 

concentrated on "better-modeled" catchments. Note that similar results were observed when 

selecting 10 donors out of the 20 most physiographically similar catchments. 
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Figure 31 Performance of the proposed approach when selecting 5 parameter sets out of the the 
first 10 neighboring catchments (solid black line). It is confronted with three benchmark 
comparisons: random donor (dotted grey), spatial proximity (dashed grey) and calibrated 
model (solid grey) 

10.5.4 Robustness of the method: application of the metrological desert test 

As explained in paragraph 10.3.3, one of our objectives is addressing the performance of the 

presented indirect regionalization method in data-sparse situations. We will address this point 

using the "metrological desert" test presented in section 3.3 and in chapter 9 

 

Figure 32 shows, with a black dashed line, the median efficiency obtained by an indirect 

regionalization using 50 neighbours and streamflow statistics estimated with a simple 

regression (for which we assume that the performance decrease in a "metrological desert" 

situation could be negligible). This is the same case already presented in Figure 27 and has 

been chosen for the metrological desert test since in a sparse-network situation we consider 

the IDW interpolation of the residuals to be unreliable. 

As a comparison, the chart also shows the results of the backwards-sorting physiographic 

similarity approach discussed in section 7.3: this method has been chosen as an example of 

good robustness. 

Indirect regionalization (or, at least, the selection of parameter sets) shows a remarkable 

robustness: the obtained performance is only dependent on the performance of the first-step 
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estimation of streamflow, and on spatially-sparse networks it is likely to perform as well as 

similarity-based methods or even better. 

Of course, in cases where some stations could provide useful data for flow statistic estimation 

but not for model calibration, we could expect even better performances. 

 

 

 

Figure 32: "Metrological desert" test. The median efficiency of an indirect regionalization 
method using regression-estimated flow statistics (black line) is confronted with the optimal 
physiographic-similarity method identified in Part 3 (grey line). 
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11 How the choice of an efficiency criterion impacts o ur 
vision of the 'best' regionalization method 

 

 

 

 

 

 

In this chapter, we will test the regionalization methods seen in the previous chapters from 

the point of view of different efficiency criteria, in order to investigate whether their order of 

preference should be considered as specific to the chosen criterion. Specific “sub-criteria” 

will be used to better address the relative strengths and weaknesses of the two families of 

regionalization methods (traditional and indirect). 
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11.1 What is the best regionalization method when we adopt an FDC-based 

performance criterion? 

In chapter 10 we have seen that indirect regionalization based on the reproduction 

regionalized FDC quantiles has worse performances than traditional methods based on site-

similarity, at least when the performance criterion of choice is C2M (bounded NSE).  

It is not clear whether the poor performance of such methods is mostly due to a poor 

regionalization of the FDC quantiles, or to the fact that the constraint imposed by the 

reproduction of the FDC is quite different from the one imposed by RMSE-based criteria. 

The purpose of this chapter is to clarify this point by means of a change in the performance 

criterion: an FDC-based constraint will be used to evaluate the regionalized models, instead 

of C2M. For each catchment in our database, a new parameter set will be calibrated, 

according to such constraint. These parameter sets will then be regionalized according to the 

same procedures outlined in chapters 7 and 8. 

11.1.1 Performance criterion used for calibration 

The first step of our evaluation is the calibration of new parameter sets under an FDC-based 

constraint.  

The performance criterion used is almost identical to the “penalty score” presented in section 

10.4.2, ie a sum of normalized errors on empirical FDC quantiles. The only difference one is 

that the “lag” statistic (time shift that maximizes the correlation between rainfall and runoff 

records) is not used in this case, as its discrete nature (its empirical values can only be 

integer: 0, 1, 2, etc.) leads to discontinuities in the optimization surfaces, which make 

calibration procedures either very time-consuming or inefficient.  

11.1.2 Regionalization results 

Figure 33 shows the results of direct and indirect regionalization methods when evaluated 

with an FDC-based criterion. For ease of reading we have chosen to only show two direct 

methods, as the performances of the remaining two were very similar. We have also included 

two benchmarks: the calibration performance (solid grey line) and the performance of a 

“worst case” regionalization using 10 randomly chosen parameter sets. Readers will note that 

the best performances correspond to the lowest values of the chosen criterion. 

 The performances of the best direct and the best indirect methods are comparable, with only 

slight differences at the two extremes of the distribution (an indirect method based on FDC 
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quantiles regionalized with regression+IDW tends to be better than direct methods on worse-

modeled catchments, while the opposite is true for better-modelled ones). An indirect method 

based on FDC quantiles regionalized using nation-wide regressions only has the worse 

performances in the group. This behaviour suggests that the indirect regionalization’s 

inadequacy outlined in section 10.5 is mostly due to the difference between RMSE-based and 

FDC-based constraints. 

 

 

Figure 33:  Performance distribution of regionalization results according to an FDC-based 
criterion. Continuous grey line: calibration performance. Dashed grey line: random 
regionalization. 
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11.2 Use of the Gupta et al. decomposition of NSE as diagnostic tool : where do lie the 

differences between C2M and the FDC-based criterion used in this chapter? 

Gupta et al. (2009) proposed a decomposition of the NSE criterion based measures of 

correlation coefficient, normalized bias and relative variability (alpha) between the observed 

and the simulated runoff. This decomposition can be useful to understand in which ways the 

constraints imposed by C2M and by the proposed FDC-based criteria differ, and 

consequently to explain why the indirect regionalization method discussed in chapter 10 had 

disappointing results. We will first look at calibrated parameter sets in order to only focus on 

the two criteria, and then move our attention to regionalized ones. 

11.2.1 Detail of the NSE decomposition used 

Below we will briefly detail the three sub-components of the NSE used as diagnostic criteria: 

− Correlation coefficient 

 

 
Eq. 13 

 

− Bias 

 

 
Eq. 14 

 

− Relative variability (alpha) 

 

 
Eq. 15 

  

Where s stands for simulated, o for observed. 

11.2.2 Difference in calibrated parameter sets 

Figure 34 compares the correlation coefficients resulting from parameter sets that have been 

calibrated with either C2M on square-rooted flows, or an FDC-based constraint. While in 

both cases most of the simulations have a correlation of at least 0.9, there is a significant 

difference between the two calibration criteria, with the FDC-based constraint yielding lower 

correlations. 

Figure 35 shows the distribution of bias for the two criteria. The results obtained with C2M 

are good, as most of the simulations show very little bias, and overall, a very slight tendancy 
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for overestimation. The “indirect” constraint shows a worse behaviour, even if th average of 

observed biases is closer to 0. 

Figure 36 shows the relative variability observed in the two cases. While we think that both 

criteria are unsatisfying in this regard, the FDC-based constraint produces again the worst 

results of the two, with a more pronounced tendancy for over-variability. 

Overall we can say that when evaluated with the proposed sub-criteria, an FDC-based 

constraint seems to have worse performances than C2M, in particular regarding the 

correlation and bias of the simulations vs the observations. 

 

Figure 34: distribution of correlations for C2M-calibrated and FDC-calibrated parameters 
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Figure 35: distribution of bias for C2M-calibrated and FDC-calibrated parameters 
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Figure 36: distribution of relative variability (al pha) for C2M-calibrated and FDC-calibrated 
parameters 

11.2.3 Difference in regionalized parameter sets 

After discussing the difference between the calibrated parameter sets (that the regionalized 

ones try to mimic), it is time to evaluate the differences between parameter sets regionalized 

with traditional site-similarity methods and with “indirect” ones. 

Figure 37, Figure 38 and Figure 39 show an interesting trend: while indirect methods perform 

worse than the similarity based ones, the difference is smaller than when considering the two 

calibration criteria that these regionalization approaches try to mimic. This is particularly true 

for bias, where the two regionalization approaches can be considered to be almost equivalent 

(they are equally far from a neutral bias, even if direct methods tend to overestimate and 
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indirect ones to underestimate) and for relative variability, where we can only observe a small 

difference.  

The largest weakness of “indirect” approaches in comparison to direct ones is shared with the 

FDC-based constraint they try to mimic: poor correlation between simulated and observed 

runoff. This can be the consequence of lack of statistics that efficiently summarize a 

catchment’s dynamical response, and/or of the fact that calibrating against a small number of 

statistical properties is, in a way, reminiscent of calibrating against a small number of flow 

records, and results in a loss of information in comparison to criteria that use all the points of 

a time series. 

 

Figure 37: distribution of correlations for direct and indirect regionalization methods 
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Figure 38: distribution of bias for direct and indirect regionalization methods 
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Figure 39: distribution of relative variability for  direct and indirect regionalization methods 
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12 Conclusion 

Since the kickoff of the PUB decade in 2003 (Sivapalan et al., 2003), there has been an 

increasing interest in regionalization issues. 

Despite a number of case studies and some comparative studies, it is still difficult to assess 

the relative merits of the several regionalization approaches developed so far. The objective 

of this thesis was to give an outlook of those relative merits on the French territory. 

To this aim, we developed a 3-step analysis: 

� The first step (Part 2) was to develop an efficient approach to regionalize flow 

statistics. 

� The second step (Part 3) was to assess the performance of the classical "direct" 

regionalization procedure. 

� The third step (Part 4) was to use the insights gleaned from the 2 first steps and 

propose a novel framework for regionalizing models: the so-called "indirect" 

regionalization procedure, which has not been compared with direct approaches in 

previous studies. 

 

To reach more general conclusions, we developed a methodology to assess both the 

performance of the tested regionalization approaches and their robustness in a context of 

sparse hydrometric network. Indeed, the French territory has a quite dense hydrometric 

network compared to other countries and the robustness test developed here may partly 

explain the disparate results found in the literature on the relative merits of regionalization 

approaches. 

 

The second part of the thesis brought some interesting insights on our ability to predict flow 

statistics. Our approach was two-fold. First, we wish to explain flow statistics with the only 

knowledge of catchment characteristics, since this approach might be both more robust and 

more conceptually satisfying compared to approaches based solely on interpolation. Second, 

we wished to explain the residuals of the regression-based approach using information on 

their spatial organization. This allowed better performance, at the expense of a lack of 

robustness if considering a poorly gauged network. 

 

The third part of the thesis aimed at testing several options for the "direct" regionalization 

approach on the basis of the GR4J model simulations: 
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� The most important step for the construction of a successful physical similarity metric 

appeared to be the selection of the most "hydrologically relevant" catchment descriptors, 

among the many available ones. A metric based on Principal Component Analysis, with 

rather loose criteria for the selection of relevant descriptors, was compared with one 

based on a strictly performance-oriented selection of relevant descriptors, at the expense 

of loose assumptions in the variable treatment (explanatory variables were treated as 

uncorrelated, even if this was not the case): the latter approach gave the best results. In 

this regard, it is important to emphasize that most, if not all, of the available catchment 

descriptors could a priori be considered to be hydrologically relevant from a subjective 

point of view: a good variable selection process should not be driven by a descriptor's 

relevance when considered alone, but rather by its role in a compound metric. 

� Both of the tested similarity methods performed slightly better than the spatial-proximity 

alternative, with median C2M efficiency criteria of 0.56 and 0.57 for the two similarity-

based methods and 0.54 for proximity. This result is in slight contradiction with previous 

large-scale regionalization studies (see e.g. Oudin et al., 2008; Parajka et al., 2005). This 

could be due to the refined approach proposed here, aimed at selecting the most 

hydrologically relevant catchment descriptors. Thus, one could consider that there still 

exists a room for progress in regionalization approaches if some other relevant catchment 

descriptors are proposed (particularly in regard to sub-surface characteristics) and/or new 

similarity metrics are tested. 

� Last, two simple methods of combining similarity metrics and spatial proximity were 

tested, with a marginal performance increase over physical similarity alone, and, in one 

case, a significant decrease in robustness, despite the relatively high potential for 

improvement showed by an a posteriori combination of the two approaches.  

Considering perspectives of further work on similarity and proximity approaches, we suggest 

that: 

� This thesis work may have suffered from the relative lack of data concerning pedology 

(the nature of soil). The lack is “relative” in the sense that although this information is 

available in form of soil classifications, it should be first rearranged to obtain a limited 

number numerical soil descriptors that refer to the hydrological behavior of soils. 

� The similarity approaches might benefit from a weighting of the donors (giving more 

importance to the donors who are classified as most similar to the ungauged) 

� The complementary use of the similarity and proximity criteria could be further 

investigated, with the objective of predicting a priori if a certain ungauged catchment 

should be treated with either of the two approaches.  
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In the fourth part of this thesis work we focused on the performances of "indirect" 

regionalization methods, which are based on a previous regionalization of flow statistics. This 

investigation was particularly exploratory. Indeed, whereas this kind of approaches has been 

advocated by several authors in recent years (see e.g. Bardossy, 2007; Castiglioni et al., 2010; 

Westerberg et al., 2010; Yadav et al., 2007), they had been tested as operational approaches 

by only a few authors, and to our knowledge their performance had not been compared to 

"direct" regionalization schemes. 

Our results suggest that the performance of these approaches strongly depends on the 

accuracy on the statistics' estimation, and that very precise estimates would be required to 

outperform the "direct" approaches. 

In this regard it is important to note that even with a "perfect" estimation of flow statistics, 

one would get results that are still relatively far from those of the calibrated model. We have 

shown that this is largely due to the fact that asking the model to reproduce certain statistical 

properties of the observed time series is a different constraint than the one imposed by 

RMSE-based performance criteria used to calibrate the RR model, such as C2M (or NSE).  

We believe that future work on the subject of indirect regionalization schemes should at first 

focus on this issue, trying to address two questions: 

� If we calibrated a rainfall-runoff model so that the simulated record matches some of the 

statistical properties of the observed one, would we get useful simulation? In other words, 

can calibration (and consequently regionalization) against flow statistics be regarded as a 

useful performance criterion for some applications? 

� Can we tweak the target flow statistics and the way we calculate the error in their 

reproduction so that the resulting simulations are close to optimal if evaluated with our 

traditional criteria? 

On the positive side, indirect methods seem to benefit of the robustness of regression-based 

regionalization of flow statistics, and thus they have interesting performances (when 

compared to direct approaches) in the case of spatially-sparse gauging networks. 

Finally, although their performances when used alone seem to be less satisfying than those of 

more traditional approaches, indirect regionalization methods seem to integrate very well in a 

multi-criterion approach, as showed by the example of an "hybrid" approach using spatial 

proximity as well: the development of multi-criteria regionalization could be a subject of 

further work on its own. 
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Overall, among the relatively simple regionalization methods tested, site-similarity based on 

an accurate selection of physiographic and climatic catchment descriptors seems to be the 

most reasonable choice, especially if one considers that our selection of catchment descriptors 

did not include soil or geological properties, and that this method performed better than 

spatial proximity despite the high density of our gauging network. 

However, our results also underline that although similarity metrics show a desirable 

"informative" content, one should be aware of their approximate nature and of their 

robustness limits: regionalization based on site-similarity still requires a relatively dense 

gauging network to perform at its best. Pure spatial proximity can be considered an 

acceptable surrogate if the gauging network is locally dense and if only few catchment 

descriptors are available. 

Indirect methods, finally, need further investigation; but if evaluated in terms of a traditional 

RMSE-based performance criterion, they are only interesting in semi-ungauged situations, or 

in the case of very sparse gauging stations. 

 

The thesis does not give definitive answers on regionalization approaches combining 

different criteria, although a combination of direct and indirect approaches has been shown to 

give promising results. We believe that this point in particular merits a more systematic 

attention in future works on the subject of model regionalization. 
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Part 6 – Appendices 

14 Sensitivity to the elimination of similar donors: graphic results 

In the following pages we show the results of the elimination of donors which are similar to 

the receiver catchment, according to each descriptor in our list. The graphics follow the same 

conventions of those in chapter 9: the upper dashed line represents the 0.9 quantile of the 

performance distribution, the continuous line shows the median, and the lower dashed line 

the 0.1 quantile. 
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15 GR4J 

 
 

Figure 40 shows the structure of the 
GR4J model. GR4J is a two-
storage, four-parameter, daily-step 
conceptual RR model that has 
proven to give good results on a 
wide range of French catchments. 
The four parameters have the 
following functions: 
-X1: depth of the routing store 
-X2: depth of the production store 
-X3: leaks and gains (sub-surface 
exchanges with neighboring 
catchments and/or deep aquifer 
systems)  
-X4: unitary hydrograph UH1 base 
time 
 
 
For more details on GR4J, see 
Perrin et al. (2003). 

Figure 40: Scheme of the four-parameter GR4J 
model 
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