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Résumé

Les hydrologues ont depuis longtemps I'ambitiompebeluire des modeles qui ne nécessitent
pas de calage sur les débits observés. Et pouttzums, les modeles existants a ce jour
nécessitent cette opération, et leur applicatidasabasins non-jaugés dépend donc de la mise
en place de procédures de régionalisation, qutifiet des basins versants jaugés dont les
données peuvent étre utilisés en substitution kiemmues de débit manquantes.
Les méthodes de régionalisation constituent donsujet d'intérét récurrent dans les études
hydrologiques, en particulier depuis le lancemeatl'thitiative PUB de part de I'AISH
(Sivapalan et al., 2003). Cependant, I'évaluaties foints de force et de faiblesse des
différentes approches jusqu'ici proposées est endifiicile, & cause de la rareté d'études
comparatives de grande échelle. Le principal olbjdet cette thése est de contribuer a une
telle évaluation au travers de la comparaison dgfonances d'approches classiques et
nouvelles sur un grand échantillon composé par I8sins versants Francais. La these
poursuit aussi la généralisation de ses résultatbipis d'un test de robustesse étudié ad-hoc,
qui reproduit la situation de pays ayant un réskajaugeage moins spatialement dense.

L'analyse menée par la these se développe erpadiss :

* une premiére partie dédiée a la régionalisationstitsstiques sur le débit, utilisées a la
fois comme cas d'étude simple pour tester |'utibga complémentaire de donnés
spatiales et physiographiques en régionalisatiorcoemmme premiere étape nécessaire
pour la mise en place d'une régionalisation "irda@&des modeéles pluie-débit ;

* une deuxieme partie dédiée a la traditionnelleorgisation "directe” des modeles
pluie-débit, basée sur les criteres de proximitgiafe, similarité physique, ou sur une
combinaison des deux ;

* une troisieme partie proposant un nouveau schémagitenalisation dite “indirecte", qui
se base sur la régionalisation des statistiquektdit déja effectuée. Ce type de méthode
a été proposé par plusieurs auteurs dans les tes@anées, mais a notre connaissance |l
n'a jamais été comparé directement aux méthodesctes".

La these identifie la sélection de descripteurssigraphiques significatifs comme I'étape la

plus importante pour la performance des méthodasctds" de similarité physique, et

montre aussi que ces approches restent plus penfivesn face a la nouvelle méthode dite

"indirecte”, méme en utilisant un critére d’évaiaata priori favorable a la deuxieme. Cette

derniere pose a notre avis encore un certain noamguestions d'ordre méthodologique a

résoudre avant d'envisager une utilisation darsontexte opérationnel.
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Abstract

Despite a long-standing ambition to produce a mutul does not require calibration against
observed runoff data, all current hydrological medequire this step: their application on
ungauged basins is therefore only possible by meamsgionalization procedures, which
identify appropriate gauged sites whose data ad umsplace of the missing runoff record.
Regionalization procedures are therefore a sulpyédncreasing interest in hydrological
studies, especially since the start of the IAHS Rtdt&ative (Sivapalan et al., 2003).

However, assessing the relative merits of the sg¢vegionalization approaches developed so
far is still difficult, because of the relative kaof large-scale comparative studies.

The main objective of this thesis is to help suskeasment by testing classical and novel
regionalization approaches on a large datasetef®30 catchments located in France.

The thesis also aims at generalizing its resultsnegns of a purposely-built robustness test

that mimics the situation of more scarcely-gaugatibns.

The thesis analysis consists of three main parts:

= A fist part dedicated to the regionalization ofWlstatistics, used as an exploratory
tool to test the complementary use of physiogragimd spatial information in the
regionalization process, and as required step for'iadirect” regionalization of
rainfall-runoff models.

= A second part dedicated to classical "direct” reglization of rainfall-runoff models,
on the basis of spatial proximity, similarity intcAment attributes, or a combination
of the two.

= A third part proposing a novel "indirect" regiormtion framework, based on the
regionalization of flow statistics developed in tHest part. This kind of
regionalization approach has been advocated byaemgthors in recent years, but to

our knowledge it had not yet been directly compaeetilirect” methods.

The thesis identifies the selection of relevantgabgraphic descriptors as the most important
factor affecting the performances of "direct” rewbzation methods based on physical
similarity, showing that such approaches still seemoutperform the novel "indirect"

framework, even when adopting a performance coitethat can be expected to favor the
latter. In our opinion, this regionalization apprbaaises methodological questions that need

to be answered before being considered in opesdteomtexts.
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1 Introduction

Rainfall-runoff models are a key tool in severalnt@mporary water-management
applications, allowing high- and low-flow forecamji reconstitution of incomplete flow

records, correct dimensioning of dams and flood-agament structures.

However, despite a long-standing ambition, hydristisghave so far failed at producing a
hydrological model that does not require any catibn (Sivapalan et al., 2003): every one of
the currently used hydrological models, regardtdsss structure, requires the estimation of
at least a few parameters in order to realisticadlyroduce the hydrological behaviour of a
particular catchment. Even physically-based modeaigiire calibration, due for instance to
the poor representativeness of small-scale descsipthen used as parameters in large-scale
applications (Bloschl and Sivapalan, 1995).

Unfortunately, while such calibration can only kexfprmed in the presence of simultaneous
rainfall and runoff records of sufficient lengthpw measurements required are often not
available at the site(s) of interest, and in mastes installing a new gauging station is not a

realistic option, because of the time and costireduo obtain a meaningful record.

As a consequence, hydrologists often face the aigdl of making predictions in an
ungauged situation: since the parameters of theemurainfall-runoff models cannot be
estimated directly from the catchments' measurabégacteristics, parameterising a model
for an ungauged basin implies a transfer of infdiomafrom one or several gauged
catchments (often called donors) to the ungauged(called the receiver). Over the years, a
number of techniques have tried to operate suchrefer, all of which are either based on
physiographic and climatic catchment descriptorspio the geographical position of the
donor and receiver catchments, or on both. As rob#tese regionalization approaches use
such information to identify donor catchments the¢ physically and climatically similar
and/or spatially close to the receiver, they ofjenunder the names of “physical similarity”
(see for isntance: Acreman and Sinclair, 1986; Bamad Boorman, 1993) and “spatial

proximity” (Egbuniwe and Todd, 1976).

Regionalization methods relying heavily on spatiadximity are often seen as having less
desirable properties than the ones based solelghgsical similarity, for essentially two

reasons. On one side, spatial proximity does notige useful information about the link
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between model parameters, dominant hydrologicalge®es, and a catchment’s physical and
climatic properties, while physical similarity as for a qualitative interpretation. On the
other side, an approach driven by spatial proxiroiearly requires “close enough” gauging
stations, while one would naively hope that phylsstailarity allows one to identify proper
donor catchments even if they are very far fromstioelied ungauged catchment.

Yet, when considering the relative performance hed two approaches, spatial-proximity
methods often perform “disappointingly well”, antiete seems to be a degree of
complementarity between the two approaches (Outial.e2008): if one could know in
advance which of the two would work best on eaddistl ungauged basin, the performance

of such an hybrid method would greatly overcomedies of its components.

This thesis is the consequence of the above caasioles and has two main objectives:

0] To explore the complementary use of physiograplmcatic and geographical
information in the context of regionalization, undde assumption that while a
method that privileges the former is more desirathble latter can greatly improve the
regionalization's accuracy in some circumstances;

(i) To address the relative strengths and weaknessetheoftested regionalization
approaches on a rich and quite diverse dataset,esnlliating their robustness,
especially in regard of the need for spatially-elagauging station (high spatial

density of the gauging network).

The first part of this thesis outlines the commaKkground shared by the two main parts of
the thesis, consisting in the state-of the artegfionalization studies (literature review), a
description of the database used in this study,aaddscription of a few key methodological
points, that essentially regard the techniques disethe evaluation of the regionalization
approaches tested throughout the thesis. A spattaition is given to the identification of

benchmark comparisons and of robustness testing.

The second part of this thesis treats the regipatidin of flow statistic, which we chose to

deal with before rainfall-runoff models for thdléaving reasons:

(i) Evaluating the relative role of physiographic imf@tion and of spatial proximity on
hydrological variables that are less affected lgyahoice of a model structure and by the
inevitable issue of parameter identifiability/ emependence. In a way, the

regionalization of flow statistics approaches thaeal case” of a conceptual model



whose parameters show perfectly identifiable optivadues, which are in most cases
significantly (yet not perfectly) correlated to nsegable catchment’s attributes.
(i) As a pre-requisite for the “indirect regionalizatigpresented in the fourth part of the
manuscript
The approach used involved a two-step combinatioregressions between statistics and
catchment characteristics, followed by a spati&rpolation of the residuals, that can be
refined in order to acknowledge nested donor andiver catchments, and big differences in

catchment size.

The third part of this thesis deals with what isrécent years, probably the most common
regionalization approach for conceptual, lumpedfedirunoff models: the transfer of
parameter sets to an ungauged catchment from omeoog gauged catchments that are
thought to be hydrologically similar to the formerhe fundamental element of such
approaches is a similarity metric, built on a comalion of measurable catchment attributes,
so that two catchments showing similar attributed e considered to have potentially
similar hydrological behaviours.

Such attributes can describe physiographic andatiinproperties of a catchment, or even its
geographical position (but as the objective of giamalization procedure is to deal with
scarcerly-gauged regions, a common objective dbnegjzation studies is to reduce as much
as possible the role of the latter in the simijanitetric).

In this thesis work, we proceed in a similar fashiath what is done with flow statistics, by
trying to get the best possible results out of #wailable physiographic and climatic
information in the first place, and using spatiabxmity in a complementary way in a

second one.

The fourth part of this thesis deals with what vedl tindirect" regionalization methods, as
they are based on the previous regionalizationos¥ Btatistics. Once their values have been
calculated for a given ungauged catchment, rabnfadbff parameter sets for the same basin
are chosen on the basis of their ability to prodacsimulated streamflow record that is
consistent with those statistics. These methods ban attractive as the first-step
regionalization they are based on has more desigabbperties than the direct regionalization
of parameter sets, but as we will see, on anotider the construction of a statistic-based

constraint that produces desirable simulation®idnivial.



The last part of this manuscript features a publistarticle on the issue of outlier
identification and treatment in the context of a{step regionalization of flow statistics, as
the one showed in the second part.
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Part 1 — Methods, databases and literature

In this part, we provide the context and commorkgemund shared by all parts of this thesis,
in terms of methodological approach, available datal placement relative to the existing
literature on the topic of regionalization:
= Chapter 2 describes the databases used in this;thes
= Chapter 3 discusses the methodological aspectsargléo the evaluation of the
alternative approaches proposed in the thesisdreas the ungaged catchment issue;
= Chapter 4 presents a detailed review of the lteeabn the regionalization issue.

-11 -






2 Databases used in this thesis

In this chapter, we present the datasets on whichvork is based.
We start with a short justification of our use ofaege catchment dataset. Then, we present
this dataset; we have a look at the relationshippvéen catchment characterization and

physiographic and climatic descriptors, and finisth some synthetic descriptors.
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2.1 Why should we use a large set of catchments?

In this study, a data set of 865 French catchmeatsused. The catchments are spread over
France and are subject to a variety of climatic ditions (oceanic, Mediterranean,
continental). What is the interest of using sud¢frge dataset in a regionalization study?

The first reason is that a large dataset givesrineguarantee of diversity. A dataset
including catchments of several different hydrotadi physiographic and climatic flavours
should ensure that all the results of the studybmanonsidered relevant to the general issues
that are shared by every regionalization applicatand less affected by local specificities.
On this point, we notice that our dataset is &itlfrom the "ideal" case, which would be a
dataset including many catchments from all over weld, and that our results will be
inevitably specific to France.

The second reason is that the impact on regioni@izaf relatively rare occurrences such as
catchments that have some (hydrological) reasdoe tconsidered as outliers and hidden data
errors is put in better perspective when consideanarger dataset: smaller ones could be
"lucky cases" that do not present such imperfectioron the contrary be greatly affected by

a single "bad" catchment.

2.2 How our dataset was made

The selection of catchments was made based ondhtega:
0] absence of regulation,
(i) availability of continuous rainfall and streamflorgcords over a twenty year
period (1986-2005),
(i)  amount of missing values in the streamflow recess lthan 20%.
Table 1 presents the main characteristics of the dat in terms of catchment area,
precipitation, potential evapotranspiration (PE) atreamflow.

Table 1: Essential characteristics of the 865 catahent data set

Min 0.2 0.5 0.8 Max
Quantile | Quantile | Quantile

Area (km?) 2 73 208 828 112990
Mean annual 547 818 968 1233 2144
precipitation, P
(mm/year)
Mean annual 14 202 327 595 6500
runoff, Q (mm/year)
Mean annual PE 304 631 670 727 892
(mm/year)
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2.3 How can we characterize a catchment?

Ideally, physiographic descriptors should be abte represent in a balanced and
comprehensive way the main hydrologically releveaits of a catchment, namely:

= the catchment’s climate ;

= jts topographic characteristics, such as elevatogg, land use ;

= jts lithological and soil characteristics.

Unfortunately this ideal cannot always be fullylized.

Indeed, while topographic and climatic descriptme widely available, the situation is much
more difficult for lithology and soil type/propess: currently available descriptors either
seem not to be entirely relevant to the hydroldgicacesses, or to be potentially very useful,
but not measurable at the relevant scale (fullksatnt, for a lumped model), nor easily re-
scaled.

So far, only one attempt of using soil informatgeems to have given successful results: this
is the case oBFIHOST (Boorman et al., 1995), a British index of lowslocatchment
behaviour that is derived directly from soil mapsth a rather complex procedure. Note,
however, that while this descriptor has proven eéoghite successful on the catchments for
which it has been developed, it does not seem t& nearly as well on a different dataset, as
shown by Oudin et al.(2010) and by Schneider é2@07), probably due to inconsistencies
regarding the type of catchments considered: sirggard Schneider et al.(2007) noticed that
BFIHOST seems to have a much better predictive value otheror Europe catchment than
on southern (and especially Mediterranean) ones.

However, some topographic descriptors seem to beaat indirectly linked to hydrological
soil/llithology properties: drainage density (exgext as size of source areas) is one of them
(Le Moine, 2008).

We have just mentioned that catchment descriptoosild be measured at full-catchment
scale for a lumped model, implying that the relé\srale for a distributed one is finer. These
trivial observations, as well as the interestirayysof BFIHOST's successes and failures, are
particular cases of a more general principle, khieth the empirical approach followed in
regionalization studies (Sawicz et al., 2011).

This principle says, in our opinion, that the hydgical relevancy of a catchment descriptor
is always relative to a specific hydrological apation, that is defined by the kind of model

used (structure, time step), the scope of the egpn (as expressed by the efficiency
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criteria, or by the targeted flow statistics), tkmd of catchments considered, and the
interactions and correlations with other availadscriptors.

Of course, some descriptor choices can give camistesults for several different
applications, and identifying such a descriptot Is a reasonable (although ambitious)
objective, until the consistency is not expectetbéqerfect and hydrologists do not mistake

relative truths for absolute ones.

Last but not least, it is crucial to remember tm&asurable descriptors show, in most cases,
only the facade of a catchment's structure and tfoning, and that two catchments that
“look” similar can’'t be expected to behave simyaith a crude, mechanistic way. Our best
efforts should be expected to produce a situatibere/two apparently similar catchments are
likely to have a similar behaviour, but this susceblould not mislead us: failures will still
exist and should not be systematically seen asdhsequence of “outliers” or data errors.

In hydrological investigations, well chosen catclhindescriptors can provide very strong
clues, but cannot be taken as conclusive evidence.

Les us have a look at which descriptors were abvigléor the physiographic and climatic
characterization of our catchments (Table 2).

Table 2: List of catchment descriptors available fothis study

Descriptor Description

1T Average temperature (°C)

2|wW Average wind speed (m/s)

3| Hum Average specific humidity (g/kg)

4| A Area (km?)

5| Zmin Minimum altitude (m)

6 | Zave Average altitude (m)

7 | Zimax Maximum altitude (m)

8|Zon n=1,.9 Altitude distribution quantiles

9| Shin Minimum slope
10| Save Average Slope
11| Smax Maximum Slope
12| Son Slope distribution quantiles
13| URBAN % of surface occupied by Corine land coverssks 111-124
14| AGRIC. % of surface occupied by Corine land covasses 211-213
15| FRUIT % of surface occupied by Corine land covessks 221-223
16|HYBRID % of surface occupied by Corine land coviaisses 111-124
17| FOREST % of surface occupied by Corine land colasses 241-244
18| OTHER % occupied by remaining Corine land covassés
19|DD Drainage Density, expressed in average sous size (km?

-16 -



Drainage Density is calculated here as the geometeian of a catchment's source areas' size.

See Le Moine (2008) for more details.

Table 3 shows the cross-correlations between mbgiup descriptors (the quantiles of
altitude and slope have been excluded from thike thiy sake of brevity). Some descriptors
show very strong correlation, such as heights does, forest and agricultural coverage,
temperature and specific humidity.

Most of the strongest correlations (more than 0a8g, in our opinion the symptom of the
catchment types encountered in our dataset, wliemdo belong to a continuum between
two extremes: on one side, mountain catchmentshMand to be steeper, more forested,
colder and rainier, while on the other side lowl@atchments tend to be flat, less rainy, with
agricultural fields instead of forests. As a resdlimate variables, altitude, slope, forest and
agricultural land cover appear to be strongly depaehon each other.

Temperature and humidity are also strongly coreelatvhich isn’t a surprise since the latter
is expressed as absolute moisture content, rdtaerrelative.

Finally, a few descriptors do not show strong datrens with other catchment
characteristics: it is the case of some land usgsek (which are probably less represented in
our dataset) minimal slope and catchment area.ldtke is quite reassuring since it means

that for each catchment size several catchmens tgperepresented, and viceversa.
Since in the applications described later in thests we choose to use appropriate techniques

to select the relevant descriptors, choosing whlescriptor should be kept in the strongly
correlated pairs or groups is not necessary.
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Table 3: Matrix of correlations between descriptorg(p<0.05 significance in bold characters)

P 1

T -0.54 1

W -0.43  0.26) 1

Hum -0.52| 0.95 0.31 1

A -0.08f 0.03 -002 0.03 1

Zmin 0.48 -0.81 -0.33 -0.78 -0.11 1

Zmoy 0.59 -0.82 -0.44 -0.84 -0.03 0.87 1

Zmax 0.56 -0.65 -0.48 -0.69 0.15 0.63 0.89 1

SMin 0.32] -0.26) -0.08 -0.260 -0.15 0.38 0.34 0.19 1

SMoy 0.63 -0.55 -0.46| -0.63 -0.06 052 0.8 0.83 0.36 1

SMax 0.55 -0.47] -0.45 -052 0.16 0.32 0.5 0.82 0.02 0.76 1

URBAN -0.2| 0.16 0.1/ 011 0.02 -0.23 -0.260 -0.2] -0.15 -0.24 -0.13 1

AGRIC. 0.6 034 046 0420 0.06 -05 -065 -064 -033 -07 -055 0.12 1

FRUIT -0.12 027 0.04 017 -0.02 -013 -0.09 -0.01 -0.01 0 0.03 0.09 -02 1

HYBRID -0.071 0.35 006 042 -001 -018 -0.22] -0.19 0 -0.24 -0.16 -0.01 -0.08 0.03 1

FOREST 0.6 -0.43 -0.44 -051] -005 052 065 061 033 07 05 -024 -085 0.04 -0.34 1

OTHER 0.220 -047 -0.2| -0.48 -0.01 0.35 0.48 047 007 047 042 -0.08 -0.28 -0.05 -0.18 0.08 1

DD -0.071 -0.01 017 -0.01 -0.02 -0.09 -0 -0.13 -0.12 -0.12 -0.06 0.05 0.19 -0.04 -0.12 -0.13 -0.01
P T W |[Hum| A |Zmin|Zmoy|Zmax|SMin|SMoy|SMax| URB |AGR | FRU | HYB | FOR | OTH | DD
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2.4 Distribution of a few key descriptors and flow chaacteristics over our dataset

In this chapter we will look at the shape of thstalbution of some of our descriptors. The
scope of this analysis is on one side to providalaa of the diversity of the data set, and on
the other to serve as a diagnostic tool prior ® dbfinition of a similarity metric between
catchments.

Figure 1 shows the distribution densities of sixoamnthe most relevant physiographic and
climatic descriptors. It can be seen that the iistion shapes are fairly close to normal —
with the exclusion of a few extreme values — afrarn Area and Drainage Density, which
seem to be log-normally distributed.

Figure 2 shows the distributions of five flow chaeistics: average annual runoff (Q), three
flow quantiles (Qo, Qs0, Quo, Where Qo is the daily runoff that is surpassed on 10% of
observed days, 4 is the median flow, @ is the daily runoff surpassed on 90% of the
observed days) and Base Flow Index (fraction os&baunoff over total runoff. The base
flow separation has been made by a graphical melihkohg hydrographs' 5-day minima
values). These chart emphasize the diversity of dataset: from rather dry to very wet

catchments, from very unresponsive to very respensi
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Figure 1. Distribution densities of six physiograplc distributors, compared with normal
distributions (dashed lines). Note the semi-log skes for Area and Drainage Density (lognormal
distributions were employed in these two cases)
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3 Methodological aspects

This chapter will clarify a few key points relatite the methodology followed throughout

this thesis work, and define the meaning (in thetext of this thesis) of often-repeated terms
and expressions.

We will discuss successively the jack-knife apphosx cross validation, the need for using
benchmarks in order to interpret our validationuhss and the specific way to address the
notion of robustness in a regionalization perspectLast, we will discuss the differences

betweerdonors andreceivers, and argue for a different selection procedurdherdonor and

the receiver pool.
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3.1 General principles of the comparative testing of akrnative regionalization

methods

3.1.1 Jack-knife approach to cross validation

In this thesis, as in most regionalization studéekave-one-out cross validation method has
been used to assess the performances of the pdopegenalization procedures. This
procedure is commonly referred to as "jack-knife'hiydrological studies, and we will also
do so in this thesis work. Note however that tisis af the expression jack-knife could sound
improper to a statistician, since it usually ressrio the estimation of the variance and bias

of a statistic (Efron and Gong, 1983), rather ttwathe evaluation of a predictive model.

In the context of regionalization studies, the mdthonsists of the following steps:

- Ignoring the gauging data of one catchment in tawaskt. We will refer to this
catchment apseudo-ungauged, or asreceiver;

- Estimating model parameters or flow statistics tfog pseudo-ungauged catchment
using its physiographical and climatic descriptoliss the complete information that
we have for the rest of the catchments in the dataalleddonors);

- Repeating the procedure so that every catchmeiiteérdataset is treated once as
pseudo-ungauged;

- Evaluating the efficiency (or the errors) of thevil simulations (or flow statistics)
estimated in such a way, usually taking an ave@geedian of the efficiencies

(errors) observed on individual catchments.

3.1.2 There is no absolute truth in this world: we needrichmarks

If looked at in an *“absolute” way, the performancaels most current regionalization
approaches would probably look rather poor, esfigdracomparison with the performances
of a calibrated mod&l and the differences between a method and anutbeld look quite
small. Furthermore, such performances are inhgrel@pendent on the model and on the
dataset characteristics, among which its spatiasitheis possibly the most influent: for this
reason, we decided to develop a robustness téstl Catetrological desert” which consist in

artificially reducing the dataset’s density (seetie® 3.3 for a full discussion of this test).

! Notice that in this thesis work, for sake of simiy, we did not use a split-sample calibratiotitiation approach: therefore, the
calibrated parameter set will yield the model'sthEsssible performances on the time series coresider
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Following these two considerations, we think thdtedative” evaluation of regionalization
performances is more meaningful than an “absolateg. We then propose to evaluate the
performance of regionalization methods in a retatway, with the help of benchmark
comparisons. Such benchmarks should give an exaofpheinimum and maximum, and
“acceptable” expected performances, and should d kqual when switching from a

regionalization method to another.

3.1.3 Specificities of different models: how the regiomzdtion exercise differs for a

statistical and for a rainfall-runoff model

This thesis covers both the regionalization of flgtatistics, and the regionalization of
rainfall-runoff models. Though the two exercisearshmany commonalities (they can even
be combined as shown in section 10), they differabteast one crucial point: while flow
statistics generally show significant correlationish physiographic and especially climatic
descriptors, this is seldom the case for calibratedel parameters, which should ideally be
climate-independent. As a consequence, regresdietween physiographic and climatic
descriptors and streamflow statistics tend to sholeast acceptable results and can be used
as the founding element of a regionalization apgrqaven if we should be aware that this is
mostly due to the fact that flow statistics arestly dependent on the climatic forcings).

On the other hand, as covered in paragraph 4.dgtession-like relationships tend to fail
when applied to model parameters, even when saogdtisti calibration techniques are used
in order to obtain more physically-correlated pagten sets: the most successful
regionalization approaches for rainfall-runoff msdare generally based on data-transfer
methods.

Another peculiarity of rainfall-runoff models isahthere is a degree of interaction and
interdependence between the values of differeratrpaters. This is probably the reason why,
when using the information of several donor catamsielinear combination of model
parameters does not seem to be the best choickodsebased on model output averaging, as
outlined by Mcintyre et al. (2005), seem advantagedn this case, a simulation is run for
each of the donor catchments, using the donorsameder set and the pseudo-ungauged
rainfall record. The pseudo-ungauged simulatedastfiew record will then be a linear
combination of those simulations.

It is worth noting that there might be a second&ason why output-averaging gives good
results: the most common performance criteria aseth around the RMSE and are usually
more forgiving for conservative, smoother-than-ssegy simulations than for simulations

which look more "realistic" when not compared wilie measured runoff record, at the cost
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of taking more risks. Averaging several slightlyfelient simulations goes exactly in the

direction of a conservative/smooth prediction.

3.2

Catchment selection: differential approach for thedonor and the receiver pool

An important methodological issue in regionalizatistudies is the selection of the

catchments on which to test the proposed proceddesg, we discuss the options, and argue

that the best choice is probably a differential rapph for the selection of "receivers"”

(catchments that should be treated as ungaugedgdarregionalization test) and "donors”

(gauged catchments whose data is transferred t@tiegers).

Receivers: Ideally, we should use as many "receivers" as plessisetting only
reasonable demands about the accepted amount @nhimffluences and the amount of
available data (streamflow and precipitation resbkehgth and completeness, available
catchment descriptors). The objective of a brodéctien of receivers is to be able to
test regionalization methods on a large and diveasaset, in order to (hopefully) ensure
that the observed results will be as general asilples and not specific to a given

catchment type.

Donors: On the other hand, there should be no particutait bn donor selection. Most
regionalization methods include some kind of doselection, and in many cases the
regionalization exercise is limited to the idemifiion of a few catchments that show
some similarities with the receiver, under the agstion that they are correlated to
hydrological similarities. Depending on the regiliration application, it is possible to

black-list some catchments (never use them as dp(gwe paragraphs 6.2 and 6.4).

However, in any case, we insist on the fact thatluekng a catchment from the list of

potential donors should never lead to its exclusiom the list of receivers. The constitution

of the list of receivers should be independent frahregionalization considerations, if the

evaluation of the method is to remain sound. E¥acatchment was found so peculiar that it

would not look like any other catchment in the datait should not be excluded from the

receiver dataset.
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3.3 Further methodological requirements to assess the obustness of a

regionalization method

3.3.1 Why this question makes sense?

One of the essential characteristics of our datasét spatial density. Of course, there is no
point in complaining about it, since it offers largopportunities for testing regionalization
methods. But we should still be careful, since wendt want our results to be specific to a
high hydrologic density environment. As we showint Figure 3 below, most of the
catchments in our test set have a neighbor catchaheser than 25 km. In half of the cases,
this distance is less than 10 km.

Such a strong spatial density of available gaugtajions makes pure spatial proximity
perform really well for practically any hydrologicapplication on ungauged catchments:
indeed it is usually the case that regionalizastudies built on a dense gauging network find
spatial proximity to be a very good regionalizaticniterion, and in some cases superior to
site-similarity (see e.g.Merz and Bldschl, 2005)t B a real world application, we may deal
with catchments for which the closest gauge ishmraway, and anyway, the spatial density

of gauging networks may be different in other coiest

50

distance [km]
N
o1

0 20 40 60 80 100
% exceedence

Figure 3: Distribution of the distance of the closst neighbouring catchments over our dataset
(distance calculated between catchments' centroids)
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An analogous reasoning can be made if we consiehment’s characteristics instead of
their positions: having nearly 800 catchments aelatively small territory means that for

each catchment it should be possible to find soemg similar donors.

One of the ambitions of this work is to identifygrenalization methods that perform well on

the majority of our catchments, but also in thoses fcases where a very close gauged
catchment, or a very similar one, are not availablethermore, we would like to evaluate

how such methods could potentially apply on differdatasets, including less-dense ones.
For this reason, we need to go beyond the stanéstohg of regionalization method and

imagine a more requiring test, a true "crash tdsdt will challenge the robustness of the
tested regionalization methods to the lack of ckrse of similar donor catchments.

In the the next paragraph we will introduce a tiest the sensitivity of regionalization
methods to the lack of close neighbours. A procedatled “metrological desert” has been
developed, whose results, and extension to thedaskmilar catchments, will be discussed

in chapter 9

3.3.2 Assessing the impact of the density of neighborstrological desert generation vs

random network reduction

In order to build a hydrological "crash test" foggson the gauging network's density, we
must simulate a reduction of the density of ouasat by ignoring some stations. The most
intuitive (and also most elegant) method of aclmg\such an artificially-reduced dataset is to
remove from the list of donors a certain numbestations, chosen randomly. As a result, if
one looked at the position of these catchments amp, the reduced dataset would show

more or less evenly distributed gauging stations.

However, if we look at our dataset in Figure 4, @am see we face a slightly different
challenge: regions where practically every nextcluatent is gauged and useful for
regionalization purposes (not too many human imites) are interrupted by what we called
"metrological deserts", i.e. regions where for anber of reasons (mountain regions, flat
regions having a mostly artificial river networlk)et density of the gauging stations is much
lower. If we consider an ungauged catchment in @hsuch metrological deserts, and the
distance of the available gauged catchments, weldlexpect a "threshold” situation: up to a
certain distance, there is no gauging station,jlstt a little further away we might have a

very "hydrologically rich" region.
- 28 -



In order to better reproduce such a situation, exebbped a different kind of robustness test,
which we called "metrological desert”, and thatl g used extensively in this thesis work.
In this case, instead of choosing what percentdgatchments are to be removed from the
donors list, we set the desert's radius: when densig a catchment as ungauged, we will

ignore all potential donor (gauged) catchments whmentroid is closer than the desert radius.

0 50 100 200 km
S T Y T T

Figure 4: The catchments of our dataset are presestl. Red-circled catchments do not have a
neighboring basin closer than 20 km

The qualitative difference between the two methaltsuld be clearer by looking at Figure 5:
in both examples the same field of ungauged andeghgatchments is considered and the
same number of stations is discarded. In the chfeeaandom density reduction we might
still have "close" donors, while in the metrolodickesert case we might still have many

donors but none of them will be "close" to the wgad we are working on.

-29 -



0 50 100

Figure 5: Random density reduction (left) VS metrobgical desert generation (right). Blue
represents the ungauged catchment, beige the autlibed donor catchments, red the discarded
donor catchments. In both examples, 20 donors haveen discarded.

The two methods also differ in how strongly theyeef regionalization performance and
Figure 6 illustrates this point better. The samelehdvas been regionalized with a similarity-
based technique, on a dataset whose density hasdsheced randomly in the first case, and
with a “desert” approach in the second. It quitsclthat the "metrological desert" situation is
more challenging than a random network density ¢eon, even if the number of discarded
catchments is much lower (with a 200 km radiuss l#san 30% of the catchments are
discarded). The reason for such behaviour is #gatye discussed in section 4.5.4, similarity
metrics and spatial proximity are linked, so thatelacluding the closest donors, we are also

excluding many of the most similar ones.

-30 -



=
w
=]
8
ﬁ o
Q
=
o
B
= g
o
[Ty}
-
= T T T T T
0 ] 10 15 20
number of gauged stations each 10000 km~2
a)
=]
{q —
=
8
g =]
(&
=
o
)=
= B 4
o
[Tg:]
11'_ —
o T T T T T
0 50 100 150 200
distance of the first neighbour [km]
b)

Figure 6: Impact of a progressive reduction of theaumber of donor catchments on the efficiency
of a regionalization exercise (here showed: the meagh efficiency of a regionalized RR model). a-
random reduction of the density of donors, b- creabn of a metrological desert.

Finally, when considering the computing time andsstency of the two methods, random

density reduction has a disadvantage that led wistard it. When randomly eliminating

donor catchments, it is important to be aware af the results might differ according to how

the random number generation algorithm that drihestest is initialized. To eliminate this

issue and achieve a representative result, onddspetform several realizations of the same
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procedure and consider an average or median reSulth undesirable behaviour is

particularly emphasized when trying to achieve Veny network densities: the number of

different realizations required to converge to &alie" result might be quite high. The

"metrological desert" being a worst-case scendrat tloesn't rely on a random procedure,
does not present this problem.

The main drawback of the metrological desert &sgpplied in this work, is its “one size fits

all” character: our dataset inevitably has regiohkigher hydrological diversity across space
(where the test should degrade performances mdoklguand more homogeneous ones

(where we might expect a more robust regionalipatio

3.4 Synthesis of the methodological choices

In this paragraph we would like to quickly summaraur methodological choices for the rest
of the thesis.
= The evaluation of regionalization performances Wwél done with a jackknife (leave-
one-out) cross-validation technique, as outlinegaragraph 3.1.1
= Our performance criteria will be °Rand RMSE for the regionalization of flow
statistics, and C2M, a bounded version of the Nast Sutcliffe efficiency, for
rainfall-runoff simulations (see paragraph 7.1.1)
= We will evaluate the robustness in data-sparsatsitos with the metrological desert
test
= The catchment considered as ungauged will be afsored to aseceiver, while the
catchment whose information is used instead ofrtlesing streamflow record will be
calleddonors
= The models used will be linear or log-transformegressions for flow statistics, and
GRA4J for rainfall-runoff simulations.
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4 Literature review on the regionalization of rainfall-runoff
models

This chapter deals with a detailed literature reva®vering the topic of regionalization. We
start by defining the ungaged basin, and then m®p® structured analysis of available
literature:
= Some authors argue that with ungauged basins, dhion lies in "putting more
physically measurable" parameters in the modelderoto reduce the dependency on
calibration;
= Other authors consider that the solution lies mdiftig a posteriori a relationship
between calibrated parameters and relevant phygpbagr and climatic descriptors (or
geographical coordinates);
= Others prefer to look for "similar" catchments,drder to transfer parameters from
them;
= Last, some authors in recent years investigategaobential use of previously made
regionalization of some flow characteristics todguithem in the choice of model

parameters.
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4.1  All agree more or less on a definition for an ungagd basin

In this thesis, we will consider as “ungaged” achatent for which we do not have any
measure of runoff at the site we are interestedlthough we have rainfall measurements
and at least a few physiographic measurements ¢ratelate to its climatic, topographic,
land-cover characteristics). We also suppose thag number of neighbouring sites, we do
have runoff records long enough to allow the preéidacof basic statistical analyses and the
calibration of parsimonious lumped rainfall-rund¢fydrological models, in addition to the
rainfall and physiographic measurements.

This definition of ungauged catchment is the oreresth by most of the existing literature on
the subject, although it is not the most genera: mne could define as “ungaged” any
catchment for which there is no sufficient datgpésform the calibration of a rainfall-rinoff
model with the usual techniques. Under this gergefhition, other specific cases can occur:
we will cite for instance a study by Winsemius kt(2009) that cover the case of "scarcerly
gauged river basins, where data is uncertain,nmmtgmnt or nonconcomitant” under the name
of “ungauged”. Rojas Serna (2006) and Seibert aadeB (2009) take a similar point of
view, considering the case of "almost ungaged caécits”, with results agreeing that it can
be in most cases relatively easy, even with limiegburces, to turn an "entirely ungauged"
catchment into an "almost ungauged"”, by performangmall number of well-chosen flow

measurements.

4.2  For a hydrological fundamentalist, there is no speal problem with ungaged

basins...

If hydrological modelling was a mechanistic scignitee distinction between "gauged" and

"ungauged" catchments would not be of any speareést. Indeed, in such a case, the
model would so precisely reproduce the relevantgsses generating runoff, that all model
parameters could be directly estimated from fiekhsurements of some physical property of
the catchment. Runoff records would only have thgppse of model validation, but once

such a model would have proved to be valid on gelanough set of catchments without
requiring any form of additional calibration, onewd be sure of its transferability to an

ungauged situation. This situation is ironicallysdgbed by Richard Silberstein in his 2005

paper entitledHydrological models are so good, do we still need data? In this perfect

mechanistic world, the definition of “ungauged” bdson the absence of runoff data would
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be useless, a new one could be given, based oralikence of the adequate field

measurements.

We argue that in the present state of the art,néinely mechanistic model is yet to be seen,
possibly not because of a wildly inaccurate undeding of the relevant processes, but rather
because nearly all catchments, outside experiments, are “ungauged” when it comes to
measuring all their hydrologically relevant chaeaustics at the adequate scale(s). In such a
situation, all hydrological models need local cadiibn, and at least in the short term, the
runoff-based definition of ungauged basin is thestmelevant.

In the following sections, we will review the ma@pproaches that have been proposed to
cope with ungauged basins.

4.3  With ungauged basins, the solution lies in "puttingmore physically measurable”

parameters in the model in order to reduce (suppres?) the dependency on calibration

The growing availability of GIS-related informatidvas driven several attempts of building
“physically-based”, spatially-distributed modellingith the inherent hope that these data
could be the foundation for a truly deterministiodel whose parameters could thus be
directly extrapolated from maps of physiographisatigtors, without the need for calibration
against runoff.

Such a model would ideally be the most desirable dagauged applications, but
unfortunately current distributed, physically-bageddels still seem to require some form of
calibration against streamflow data. As exemplifiydliu and Todini (2002) and Velez et al.
(2009) parameter maps are usually re-adjusted ladiag initially set at the values obtainable
from the descriptors maps. This readjustementtenalone by means of “correction factors”
that still need to be calibrated for individual ct@anents, or at least for hydrologically
homogeneous regions: as a result, the regionaizati such models is not a very different
exercise from the regionalization of a conceptuatlel having a similar number of degrees
of freedom.

Very probably, scale effects play a major role I tcurrent inability to derive model
parameters directly from descriptor maps: the “lurgp of hydrological behavior from
smaller to bigger parts of a catchment is a higidg-linear process, as pointed out by Beven
(1989) and more recently by Todini (2011). Thetfasnsequence of this non-linearity is that
physiographic descriptors measured at a scalereliffethan the model’'s “pixels” are not

necessairly meaningful. The second one is that) &te modeling at the pixel scale can be
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described as “physically based”, this is probabbt the case for the fluxes between

individual pixels, with the exclusion of channeldngulics.

4.4  With ungauged basins, the solution lies in findinga posteriori a relationship
between calibrated parameters and relevant physiogphic and climatic descriptors (or

geographical coordinates)

We make here a distinction between absolute aativelrelationships.

4.4.1 Absolute relationships

The estimation of a mathematical formulation thatld calculate parameter values as a
function of physical descriptors (such as regresgidias probably been the most popular
approach used in early attempts to regionalize egto@l RR models. Such an approach is
very tempting as on one side it lends itself welbperational purposes, and on the other it
might offer ana posteriori interpretation of the relationship between appamichment
properties and hydrological behaviour.

Unfortunately, this method rarely produces satmgfyiperformances, as its underlying
assumptions are very rarely respected. As Oudial.e{2008) noticed, "there are two
hypotheses underlying this approach. First, it mers that the link between observable
catchment characteristics and model parametersiiigaal, whereas unfortunately, most
models have been shown to have no unique set afmaters to describe the behavior of a
catchment, and the value of these parameters i® moress dependent on the specific
conditions of the calibration period and/or possiklrors in inputs (see e.g. Yapo et al.,
1996). The second underlying hypothesis is thatmadle catchment descriptors chosen for
regressions bring us an information relevant to lbledavior of the ungaged catchment.
Unfortunately, the spatial variability of the cateént characteristics and the difficulty to
observe underground characteristics constitutejarroastacle in identifying hydrologically-

relevant catchment descriptors.”

Mcintyre et al. (2005) also examined model regimadion in the form of regressions
between parameter values and catchment descrigtith@ugh this technique is considered
desirable for the same reasons we have stated ,abweauthors noticed that so far its
application has not been overly successful. Thdysthen looks at the specific points that
limit such approach. In agreement with Oudin e{2008) parameter identifiability is seen as
one of major obstacles: the authors would rather o identify each parameter's optimum
value "in a way that considers its intended (fuoredl) role in the model”, but notice that this

is seldom the case. Interactions between paramatersnodel structural error are seen as a
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possible cause, and multi-objective optimizationpreposed as a possible solution: for
instance some parameters should be calibrated objantive function that puts emphasis on
high flows, others to an objective function thatke at low flows. The authors also advocate
the exclusion of outliers without underlining onespible consequence: the regionalized
model will have better results on most catchmebis, will potentially make even greater
errors on badly regionalized ones.

Wagener and Wheater (2006) also tested a methtskqliential regionalization" similar to
the one proposed by Lamb et al. (2000). In thi®casegression is calculated for the most
identifiable parameter, then its values are fixedha regionalized value for all catchments
and a new optimization is run under this constrarmegression is found for the second most
identifiable parameter, and the procedure is reykiait sequential fashion until a regression is
calculated for the least identifiable parameterctSwa method greatly improves the
identifiability of some parameters but, on the otls&de, its performances in terms of
simulation efficiency are on par with a non-seqisdratpproach.

Fernandez et al. (2000) proposed, in order to aweecthe limits of regression-based
regionalizations, to simultaneously run the caliloraprocedure and the parameter-descriptor
regressions, using a compound objective functiah\hlued simulation efficiency as well as
good regression fit. Similarly to sequential methoduch an approach led to a big
improvement to a relatively secondary issue (infdren of near-perfect regressions) at the

expense of efficient parameter sets, when comparsitnpler approaches.

4.4.2 Relative relationships

Other authors have proposed relative relationdhgtaeen model parameters and catchment
descriptors. In this case the shift between modedipeter values at two sites is expressed as
a function of the shift in physical properties.

In this context Buytaert and Beven (2009) propa@sesgionalization framework where prior
distributions of parameter sets are first borroviredh a donor catchment that is recognized
as hydrologically similar, and then modified aceéogdto the uncertainty inherent to the
regionalization process and to the knowledge ofdifferences between donor and receiver.
The example given is that of otherwise very similaichments having a different land cover:
such a change should influence the parameter(spttaunt for evapotranspiration and can
be modified on the basis of the existing literatiggarding the specific change (for instance,
a switch between grassland and pine forest) omefhydrologist's own experience. The

authors hope that repeated tests on several catthimél refine such parameter shifts, in a
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way that can be interpreted as the establishmerand posteriori relationship between

changes in catchment properties and changes inlrpademeters.

45 With ungauged basins, the solution lies in findingone or more similar

catchment(s) (in order to transfer parameters fromthem)

Among the most common regionalization approaches paobably the most successful up to
date, are regionalization methods that look forggalcatchments that are similar to the
ungauged target catchment. The method consistsriowing some hydrological information
from them. Such information is usually put togetthwth a simple or weighted average, and
is usually exploited in the form of model paramgtesimulated streamflow time series, or
(more rarely) time series of rainfall and runoffr fimodel calibration (see Goswami and
O'Connor, 2006, for this last option).

Similarity-based approaches seem able to cope whnth difficulties of rainfall-runoff
modelling regionalization better than regressiorthmés and "physically-based" models, at
least from an operational point of view (i.e. wh@e only objective is to provide the best
possible simulations). However, from the perspect¥ some of the hydrologists interested
in gaining a better understanding of hydrologicabgesses and hydrological modeling
through the exercise of regionalization, they oHidess "quantitative" interpretation and can
thus seem less attractive.

Two main strategies have been used to find ap@tgpdonors: one is the use of geographical
distance as a proxy for hydrological similarityetther the construction of a similarity
metric on the basis of physiographic (sometimes elsnatic) descriptors. Of course, many
cases of "hybrid" approaches exist.

4.5.1 Methods focusing on spatial proximity

Here, we will first look at some examples of stgdie which regionalization methods driven
by spatial proximity were proposed or judged tathe most successful (including those that
use spatial interpolations such as kriging or isgatistance weighting):

Vandewiele and Elias (1995) estimated the parametea monthly water-balance model for
75 Belgian catchments, located in a region thouglite quite hydrologically homogeneous.
Two spatial-proximity approaches were comparedgikg interpolation or averaging the

parameters of neighbouring catchments closer tllakn3. Kriging gave noticeably better

results.
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Parajka et al. (2005) tested several regionalinaghemes for a semi-distributed model, on
320 Austrian catchments. Methods based on spatiimity, and especially on kriging of
model parameters, performed best, followed verysatlo by a physiographic similarity
method considering only one donor. Similarity wesnitified on the basis of ae priori
selection of catchment attributes, which perforrbetter than measures focusing on a single
characteristic (such as geomorphology, topogralamgl use, rainfall, soil classes).
Regression-based methods performed worse. Amomg, tleeal regressions (i.e. calculated
on catchments closer than 50 km to the target)fopeed better than global methods
(calculated once on all the catchments in the dgta& later study by (Parajka et al., 2007)
found that an iterative regional calibration prodgcparameter sets that are coherent with
regional trends improves the results of a krigiagdd regionalization, halving the efficiency
loss observed when comparing the results obtaingd lecally calibrated and with
regionalized parameters.

Zvolensky et al. (2008) compared several regioaibn methods on 23 subcatchments of
the Hron River. A nearest-neighbour spatial prognapproach performed better than an
approach using the parameter set calibrated owliloée catchment to model each of the sub-
catchments. A theoretical case is also presentbdremhe most similar donor in terms of
parameter values is selected. This method is usedaiuate the potential for improvement of
the donor selection: the authors conclude thatuses of hydrologically relevant physical
descriptors is advisable.

Oudin et al.(2008) compared spatial proximity watsimple physical similarity metric based
on similarity ranking of physical descriptor valugadged as a "safer" alternative to the
normalization of descriptor distributions). The akx#t used was very similar to the one used
in this thesis work, quite spatially dense, andtiapgroximity overperformed physical
similarity, even if the two approaches showed arele@f complementarity (this aspect will

be covered in greater detail in section 4.5.4).

4.5.2 Methods focusing on physical similarity

In several other studies (Kay et al., 2007; Lilet2009; Mcintyre et al., 2005; Reichl et al.,
2009), on the contrary, a donor selection basedhysiographic descriptors is proposed, or
shown to perform better than spatial proximity:

Mcintyre et al. (2005) tested on 127 UK catchmenssmilarity measure based on catchment
area, annual rainfall, and hydrological soil clésation (BFIHOST). The model outputs
obtained using the simulations based on the pasmef the 10 most similar donors were

averaged, with a weight based on the similaritywleen the donor and the receiver
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catchment. This method showed better result théim tegression and spatial proximity. The
authors commented that the poor results of theiadpptoximity approach might be a
consequence of the UK geology, which often changeskedly between neighbouring
catchments. In this regard, it is also interestingnote that the results of the tested
regionalization approaches were noticeably bettethe less permeable catchments: the very
permeable catchments (in particular the chalk ecagstis of southern England) are difficult
to regionalize and/or to model with rainfall-run@RR) models.

Kay et al. (2007) investigated the use of a siteHarity scheme where a specific catchment
similarity measure is built for each of the fourgraeters of a rainfall-runoff model. In each
case, the ungauged catchment parameter is caldudat@a weighted average of the values
calibrated on the 10 most similar donor catchmevitsiations on the numbers of donors,
catchment descriptors and weighting scheme to bd have been tested. The performances
of the method are considered satisfying and wdnth @dditional operational complexity,
when compared to a regression approach. On the sittes the ease with which new data can
be incorporated in this scheme is identified asadwantage and a way to avoid the case
where the ungauged catchment that should be modelemb "unusual” compared to the
available donors, which leads to unsatisfying rssul

Li et al. (2009) considered 210 catchments ints@aistern Australia, on which they applied
two lumped RR models. For each pseudo-ungaugebrata, either one or eight donors are
identified based on spatial proximity, physiograpsimilarity, or on a mixed approach that
integrates the two. In the case where more than dom®r is used, model outputs are
averaged instead of the parameters. The authorsl fthat the use of eight donors offers a
considerable advantage over the use of only oneerMMfomparing the three methods of
donor identification, they notice that the diffeces in performance are mostly found in the
poorer modeled catchments, with the integrated iagatysical approach slightly
outperforming spatial proximity and spatial proxiynislightly outperforming physical
similarity.

Reichl et al. (2009) discusses the identificatiba similarity metrics based on physiographic
descriptors, for 184 Australian catchments. The tmiogeresting feature of this study
probably lies in the relative sparseness of thas#dt(many catchments, but of very diverse
hydrological behaviour and spread over a very l&egétory). As a consequence, the authors
notice that a high sampling density across thergeec space would be needed to identify
relevant descriptors without an element of expeeeand intuition, and to optimize a robust

similarity metric (one that is relatively indepentleof the catchments used to develop it).
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Despite the difficult case presented by this datdsewever, physiographic similarity is
shown to yield better results than spatial proxmaitd regression approaches.

Overall, there seems to be no specific indicatiooua whether one of the two approaches to
identify donor catchments is superior: the domimaat either one (or of a hybrid method)
seems to be case-specific, and in most compartsidies such performance difference is not
huge.

4.5.3 How to define similarity?

Similarity-driven regionalization studies are bas®dthe implicit assumption that similar

physiographic properties imply a similar hydrolagdibehaviour. Spatial-proximity methods

share the same foundation, since in such case a@tgal coordinates are used as a proxy

for physiographic properties that either cannotebsily observed, or whose measurements

are not available to the modeller.

Is this assumption correct?

An interesting study by Oudin et al. (2010) focusedthis specific subject, using a very

similar dataset to the one used in this thesidy wie addition of 10 catchments located in

southern England:

= |n the study, two catchments would be declared digdically similar if the model
parameters calibrated on the first could produaeptable simulations on the second (to
ensure that this definition is not overly modelape the authors repeated the test with
two different models, which generally agreed onclittéatchments were similar).

= Then, similarity in physiographic terms was estmdatased on several descriptors
regarding topography, climate, land cover and podperties. As the previous steps
allowed to findn "hydrological cousins” for a given catchment, ajua number of
"physical cousins” was selected the same catchrrerdlly, the overlap between the two
sets of "cousins" was considered: if it was judgedbe statistically significant (i.e. not
likely to have happened by chance) then physicailaiity was considered a good proxy
for hydrological similarity, for the catchment anglly considered.

For roughly 60% of the dataset, the overlap betwdesical and hydrological similarity was

judged as statistically significant (both models\@arred on this). Yet the most interesting

considerations regard those catchments for whigisipal and hydrological similarity did not

agree, for both models: these were essentiallydhgdically unresponsive catchments, yet

often rather small and steep, which indicates tifiatorigin of the unresponsiveness must be

of geologic/ lithologic origin. Since the pool oéstriptors did not include a geology-related
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descriptor and the one related to soil properte$opmed rather poorly compared to others,

this seems coherent with the difficulty to matces unresponsive catchments.

What such a study shows is that on one side thergsgns behind physiographic similarity
regionalization methods are essentially good, butthee other the absence of a complete
description of all hydrologically relevant physicattributes of a catchment limits its

application.

4.5.4 Concerning possible complementarities between spaproximity and physical
similarity
In the previous paragraph we have shown that inyntases physiographic similarity is a
good proxy for hydrological similarity, yet in pitazal application such link might be weaker
than expected because we often lack all of theyaekephysiographic information.
How does spatial proximity relate to these two nigfins of similarity?
In several studies, spatial proximity is presensésdif it was a completely independent
concept from site-similarity. For instance, Kayaét(2007) interestingly commented a paper
by Merz and Bldschl (2004) where it was found thasted catchments tend to be better
donors by saying that "this is more likely due ite-similarity than spatial proximity".
We think, on the contrary, that spatial-proximity simply a clue for site-similarity and
"hidden" (either not measured or not measurablg$iphl properties. In cases where it works
better than approaches based exclusively on ‘lgtpblysical” descriptors, it does because we
are still not successful enough in understandind divectly quantifying the relevant
catchment characteristics, which can however bedailly guessed thanks to their spatial
structure, when a dense enough gauging networkaitaale.
In other cases, either the network density is twg lor the spatial variability of hydrological
behaviour is too high, or the available physiogramtescriptors are enough to characterize
the different "hydrological types" found in the asét, and so physical similarity is a better
guess. For these reasons, there seems to be @ adgremplementarity between physical
similarity and spatial proximity. Oudin et al. (Z)Qfor instance, showed that if we were able
to tell in advance what of the two approaches wowmtitk better for a given ungauged

catchment, such an ideal "combined" method wouktbpa remarkably well.

Another more subtle case that illustrates the pabfithe relationship between proximity and
similarities comes from the previously mentioneddst by Oudin et al. (2010). In one

section, the authors specifically focused on tis& @&f finding French catchments that were
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hydrologically or physically similar to the Englistatchments in their dataset, so that the
possibility to select spatially-close catchmentsswexcluded. Very interestingly, while
catchments which were very physically similar cokdfound, these were not hydrologically
similar to the target ones. On the contrary, whgdrdilogically similar catchments were
found, they were quite far from being physicalljnsar to the target sites!

This example shows that in some ways, our unavbidalbomplete similarity metrics are
successful indicators of hydrologically similar betour as long as at least some of the donor
catchments they select are in relative proximityhaf target site. Successful applications on
dense, or rather homogeneous network should notistaken for a success at measuring all

the hydrologically relevant physical propertiesaafatchment.

4.6  With ungauged basins, the solution lies in using @reviously made statistical

regionalization to guide us in the choice of modglarameters

Some authors have recently advocatedirairect regionalization method. This method
consists in first regionalizing flow statistics thaynthetically describe the hydrologic
response of the ungauged catchment. In a secoed pimnameter sets are chosen according to

their ability to reproduce the behaviour outlingdthe regionalized statistics.

A few existing studies have addressed the issusdatct regionalization methods.

The study by Yu and Yang (2000) is probably theestdone on the subject of indirect
regionalization, that is presented as an alteraativregression relationships between model
parameters and catchment descriptors. The autlegienalized a flow duration curve by
means of homogeneous region identification andessgon relationships, then they calibrated
the parameters of a modified HBV model so thatftbe duration curve calculated on the
simulated flows would be as close as possible ¢éorédgionalized one. The fit of the two
curves was evaluated on ten equally spaced flowtidur quantiles, each of which was given
equal importance in the final weighting. The aushevaluated the results on two catchments,
concluding that the method they used resultedgoad fit on low flows and large errors on

the peaks (as the objective function used did nbspfficient emphasis on the latter).

Yadav et al. (2007) used regionalized flow-respodsscriptors to constrain ensemble
simulations at ungauged locations. The flow stassivere regionalized by means of linear
stepwise regression on 30 watersheds in the UK,canfildence limits for each regression

were also calculated. Subsequently, model paransetsrwere randomly generated from a

-43 -



uniform distribution and, for each parameter sat aatchment, streamflow was simulated
and the previously regionalized flow charactersstiwwere derived. Parameter sets were
accepted or refused according to whether suctstitatifell into the regionalized confidence
boundaries or not. The authors state that "the adeagionalizing such indices stems from
the observation that uncertainty involved in regiaring hydrologic model parameters can
be large [...] Watershed response characteristictherother hand are not model-specific.
Therefore uncertainties and confounding influenttet might arise from the process of

model identification are eliminated (or significgnteduced)”.

Bardossy (2007) adopted a very similar method,ifbahis case the model parameters were
picked from ensembles of acceptable sets that ywereiously generated for neighboring
catchments. To be considered "acceptable”, a paearset should yield at least 90% of the
Nash and Sutcliffe efficiency provided by the omlmarameters for a given catchment. The
idea was to generate a larger variety of possilbl@ameter sets, from which to pick for
transfer between pairs of catchments in the datasetg regionalized mean and variance of
the streamflow record as acceptability criteria. iAteresting result of this study is that for
four of the sixteen catchments considered, no fgaigs parameter set could be found in
ungauged mode, because all candidate sets prodhgdibgraphs whose response
characteristics were too far from the regionalineds. As in the case of Yadav et al. (2007),
dependency of the parameters on the model stryugiarameter uncertainty and equifinality

were given as reasons to develop an indirect regjzation method.

Montanari and Toth (2007) and Castiglioni et aD1@) both used indirect regionalization

methods derived from Whittle's maximum likelihoostimation approach (Whittle, 1953),

which is based on matching the mean value andrsp@coperties of two time series.

= Montanari and Toth (2007) provide extensive detallsut how Whittle's likelihood can
be approximated for the use in hydrological modsibcation, particularly in the case of
ungauged or scarcely gauged basins. Results aserpeel only for the second case, i.e.
when historical or sparse streamflow data is usechtculate the flow statistics that are
needed to calibrate the model.

= Castiglioni et al. (2010) approximate Whittle'selikood as a similarity of the mean,
standard deviation and lag-1 autocorrelation ofeol=d and simulated streamflow
records: it is then possible to calibrate a RR rhtmleegional estimates of these statistics.
As one might want to emphasize the role of eithmer of the three statistics (according to

the scope of the regionalization), a Pareto ensemihon-dominated parameter sets (i.e.
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those sets that can not be outperformed on onstatatithout doing worse on the other
two) is identified. Finally, a streamflow time s=s3iis generated as mean of all
simulations made with non-dominated parameter aet$jts performance is evaluated as
NS efficiency. After application of this method &2 catchments in central Italy, the
authors concluded that "regional calibration praceds potentially able to convey useful
information” but at the same time "it is unlikelyat regional information is enough to
calibrate a RR model with the reliability that isquired in real-world applications”.
Finally, while the use of an indirect regionalipatimethod is advocated as a useful way
to constrain the feasible parameter space, thgratien of different information is seen

as a necessary element to further reduce its size.

Recently, Westerberg et al. (2010) considered ldn of hydrological models using flow

duration curves (FDC), but not using regionalizeteo However, they considered the
benefits of such a method in the case when raiafall runoff records are available, but not
for sufficiently overlapping periods, which woul@ kreated as ungauged if a traditional time

series calibration was used.

4.7 My opinion (before | started this work), how it evdved, and how the solutions |

tried to implement relate to the literature

When first approaching the subject of regionalatiand the literature concerning it, it is
relatively easy to fall in the trap of consideribdgo be a “war” of concurring approaches and
methods. For instance, as seen in section 4.5, me#imods sharing many assumptions, such
as spatial proximity and physical similarity, arétea presented as opposing choices,
sometimes even as radically different ones!

Such was my perspective at the beginning of thiskwbhis attitude was reinforced by the
opportunity of working on a large and diverse dettaseen as a benchmark that can ensure
general conclusions about the good (or bad) pedoo®as of a regionalization approach,
allowing one to eventually propose a “one sizedits robust method.

It was exactly the ambition to propose the mosegarapproach that allowed a slight change
in perspective, as a consequence of the robustessghat have been performed. When
comparing relatively simple, top-down approacheat tare likely to be adopted in an
engineering context, it is clear that their relatnesults often depends quite heavily on the
characteristics of the dataset they are appliedroaspect that is usually not given explicit

attention in the existing literature.
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As a consequence, this thesis work has shaped, iiseits third and fourth parts, as a
comparative study that tries to define the condgiander which each of the tested methods
should be expected to give acceptable resultstarsktunder which it should be expected to
fail, at least in terms of spatial density of tteatet.

On the other hand, this work focuses on the comgteanity between different
regionalization approaches showed by Oudin eR80g§), and on how “hybrid” methods can
take advantage of it.
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Part 2 — Studies relative to flow statistics and thir regionalization

In this part, we will focus on the regionalizatiohflow statistics. The main objective of this
part is to explore a complementary and two-stepaigghysiographic/climatic information
versus spatial proximity, on an object that cancbesidered “simpler” than rainfall-runoff

models:
Chapter 5 presents the first part of this work, iagnat relating flow statistics to

physical descriptors;
Chapter 6 presents the use of neighbour catchmesisluals to improve the

efficiency of flow statistics regionalization.
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5 Linking flow statistics to physiographic descriptors

In this chapter, we present exploratory studiesrajnat linking simple flow statistics with
physiographic descriptors. As relevant statistwe, have chosen the quantiles of each
catchment's flow duration curve. We first discuse tspecificities of flow statistics

regionalization, then we present and discuss @uwiltse
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5.1 Brief review of the literature on the regionalization of flow statistics

The estimation of flow statistics at ungauged oakehts is often needed for many
engineering problems, and performed, as for theonadjzation of rainfall runoff models, by

means of a transfer of information from gaugedtuaents to the site of interest.

Several strategies have been used to identify whaged catchments should be used as
donors of information for a particular ungaugee sl implicitly agreeing on the assumption

of an hydrological similarity between the donorsl aeceiver sites.

The oldest (and probably most popular) similaritytecion is spatial proximity: e.g.
Darlymple (1960) used it to divide a study domaitoigeographical regions, assuming that
within each one the flood frequency response canonsidered homogeneous apart from a
scaling factor (the index flood). This popular ammh has evolved into forms of
geostatistical interpolations that in some casgs ase information about the organization of

catchments along the river network:

= Sauquet et al (2000) developed a method for therpotation of average annual
runoff based on a geostatistical distance betwesichments and on a mass-
conservation constraint (the total runoff for aegivcatchment should be equal to the
sum of the runoffs of its sub-catchments). The @dissical distance between
catchments a and b is defined as the mean diskataeen all possible pairs of points
inaand b.

= Skgien et al. (2006) proposed a similar method ledatop-kriging- for the

interpolation of flow statistics.

Other approaches are based on measurable catchttrénites, such as catchment size, land
use, geology, soil characteristics, climatic vdeabcatchments having similar attributes are

assumed to be hydrologically similar.

Similarly to what seen in our review of regionatina for rainfall-runoff models, catchment

characteristics can be used to form pooling grafp$onor sites thought to be similar to the
receiver, or to establish regression relationshpsveen flow statistics and catchment
attributes: this latter approach is generally mswecessful than for the parameters of RR

models, as can be seen from the following examples:
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= Tasker and Stedinger (1989) proposed linear reigressagainst catchment
descriptors for the estimation of flow statistitsiagauged sites

= Smakhtin et al. (1997) regionalized flow duratioarves within a hydrologically
homogeneous region in South Africa. The procednwelved the normalization of
the FDCs of the gauged catchment used in the dtydyeir mean annual runoff;
their average was taken as regional normalized FD&an annual runoff (the scaling
factor) was then regionalized by means of a regessagainst mean annual
precipitation and catchment area.

= Mazvimavi et al. (2005) compared the use of linegressions and neural networks
in the regionalization of mean annual flow, flowantiles and base flow index on 52
catchments in Zimbabwe, finding that linear regmess offered better results on the
mean annual flow and the base flow index, whilavflguantiles presented a non-
linear relationship with catchment descriptors avitkre generally better estimated
with neural networks.

= Longobardi and Villani (2008) regionalized the Bfm& Index in region of southern
Italy using linear regressions using a catchmemmpability index as the only

descriptor.

Only in more recent years a limited number of stadocused on the comparison and on the
possible integration of spatial proximity and cawemt attributes in the regionalization of
flow statistics:
= Merz and Bloschl (2005) compared several methodsguspatial proximity and
catchment descriptors for the regionalization 0bfl moments in Austria, finding that
methods relying only on catchment descriptors peréal noticeably worse than those
based on spatial proximity alone or on a combimatod spatial proximity and
catchment descriptors.
= Kjeldsen and Jones (2010) found that applying aestaneighbour spatial-proximity
based data-transfer procedure to the residualsegrassion model greatly improves
the prediction of the index flood for ungauged sitearticularly when the regression
is based on fewer catchment descriptors and thgigguaetwork is dense.
In this regard, our aim is regionalize flow statistusing jointly catchment attributes and
spatial organization. This is done on flow statstias a first trial before following a similar

methodology on RR models.
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5.2 Regression as a conceptual model of the relationgphibetween physiographic

properties, climate and streamflow

As "entry-level" regionalization of flow statisticae have chosen to fit a stepwise regression
between physiographic descriptors and flow stagstn the whole dataset.
For sake of simplicity, we assumed that some ohtfmotheses under which such regression
model is acceptable are verified, even though amgorous approach would have required
the use of appropriate statistical tests. Thesethgses regard:
— The fact that the stepwise procedure requires éxalicative variables are be
normally distributed
— The degree of correlation between the explicataeables (multicollinearity). If it is
too high, the regression’s coefficients will be tatde (small changes in the variables’
samples will cause big changes in the coefficients)
— That there is indeed a linear relationship betwdmnexplicative variables and the
regionalized flows: this should be verified a-poste by making sure that the

regression residuals are not correlated with tipieative variables.

5.2.1 Nation-wide vs local formulations

The literature abounds with methods aiming at ifigng homogeneous regions (or
homogeneous pooling groups)(see e.g. Viglione et28l07). Regionalization studies are
often restricted to some previously selected 'h@negus domain'. In the first case presented
here, where we limit ourselves to a simple regogs$ormula, we could try to identify a
specific regression (or at least specific paramsgfer each of the homogeneous regions.

We purposely chose not to do so, and to fit onky melationship for our entire study domain.
We will show later that it provides the most robussults, (even if the regression on the
whole dataset yields a poorer performance, comparddde definition of pooling groups or
homogeneous sub-regions on which specific regnessice fitted.

This choice also comes from the desire to treatsipigyaphic and climatic information
independently from the spatial (geographic) onas T¥ay, the results we obtain when only
using the physiographic information represent ollitg to observe the dominant
hydrological processes and synthesize them withntijadve descriptors, while the
performance gain that we will get when accounting the geographical position of a
catchment represents our ignorance of the relguartesses or the inability to observe them
at the appropriate scale.
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5.2.2 Selecting relevant descriptors

For the purpose of regionalizing each flow statjstiot all of the catchment information

available is necessarily relevant. Furthermore, esaescriptors might offer redundant

information. Consequently, as our objective wakdwe synthetic, meaningful formulations,

some form of preliminary data mining was necessary.

In order to select the relevant physiographic ahhatic descriptors for each of the

regionalized statistics, we used a stepwise reigressiethod. The key idea of such a

procedure is that each explanatory variable mustepsignificant, i.e. that the performance

increase observed when including it in the formatahas a very high probability to be really

an effect of the variable's informative value angeay low probability to have happened by

chance.

In more detail, the stepwise regression method seel goes through the following stages:

For each variable, two regression forms are tediteghr and logarithmic;

For either of the two regression forms, a "forwardry procedure" is followed in the
first place. Starting from a model with zero vates) the descriptor assuring the best
increase in correlation coefficient is added to thgression formulation, and its
significance is assessed with a Studefitsst. This statistical test considers the
hypothesis that the improvement of the correlatoafficient is not due to the new
variable, but happened by chance. If this hypothleas a probability lower than 0.05,
the variable is considered significant, and kegharegression formulation.

Secondly, a "backward removal" procedure is rurth@nobtained regression model.
Each one of the retained explanatory variablesestetl again, to see whether its
removal causes a performance drop that might adgpdn by chance. If thietest
gives a probability greater than 0.05, the varialdediscarded. This removal
procedure is used to eliminate redundancies: fetaice it can happen that, during
the forward-entry phase, a variable identified igmiBcant in the early iterations is
"outdated" by a combination of variables added late

The "forward entry — backward removal" cycle igated until no variables can be
added nor discarded.

For all flow statistics, the results of the two meggion forms (linear and logarithmic)
were compared. In all cases, the log-transformgdession gave a better result and
resulted in more retained variables. We will ilhas¢ the retained regression form in

the following equation:
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INQ) = a+ B, In(x) +...+ £, In(x,) Eq. 1

where Q is the regionalized flow statistic in mm per tiraeit, x, are the physiographic

descriptorsa is the constant arg are the determined coefficients of regression.

5.3 Streamflow statistics considered and results

5.3.1 Streamflow statistics considered

For all of the available catchments, we calculateel following flow statistics, based on

records spanning from 1986 to 2005:

Average annual runoff;

Percentiles of the Flow Duration Curve (FDC), noineal by the average runoff. We
considered eleven quantiles of the FDC, we wikréd these values according to the
percentage of non exceedance, (for instance, is the value that is exceeded 9%% o
the time). With this nomenclature, we have; Quo, Qo, ..., Qo, Qos;

Three "slopes" of the FDC were considered. Thodewalto describe the

responsiveness of the catchment for high, interatedind low flow values:

S, = Q4 —Qs Eq. 2
S, = Qs ~Qq Eq. 3
S; = Qg5 ~Qyp Eq. 4

5.3.2 List of physiographic descriptors

For each of the studied catchments, we had thewWoly physiographic descriptors:

Climatic descriptors: Average yearly precipitatiBrimm], average yearly potential
evapotranspiratioPE [mm], average yearly specific humidity [g/kg], aage yearly
wind speed [m/s]

Geographic descriptors: Surfa&[km?], Elevation [m], Slope. For elevation and
slope, maximum, minimum and average values, as wasllquantiles of their

distributions, were calculated from a DTM. For nagithe quantiles, we'll use the
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convention that the maximum value would be labe(®ggh and the minimum would
be labelled @

- Land use descriptors, expressed as % of the tatehment surface classified under
specific classes of the Corine Land Cover Europ&ard use database (see
http://www.eea.europa.eu/publications/CORO-landcovéVe chose to aggregate
land-cover classes under the following descriptarban (Corine land cover classes
from 111 to 124), forest (Corine 311-313), agriatdt (Corine 211-213, indicating
arable land), fruit olives and vineyards (Corinel 223), hybrid agricultural spaces

(Corine 241-244), other (remaining corine classes)

5.3.3 Results

In Table 4 we present an overall review of the @sgion results. Average yearly runoff is
clearly the better reproduced flow statistic, whide the flow duration curve quantiles a trend
emerges: peak flows are better reproduced, whdedgressions for lower—magnitude flows
can be very poor. A possible explanation is thatdkailable catchment descriptors do not
contain relevant information about baseflow forrmatiand connection to larger acquifer
systems.

These results are also graphically presented iar€ig to Figure 10.

Table 4: coefficient of determination and RMSE forthe regressions between flow statistics and
catchment descriptors (calculated on log-transforme values). Av_Q stands for average annual
runoff.

Variable R"2 RMSE 1 00E+04
Av_Q 0.735 0.335
Qs 0.308 1.022 =
Q1o 0.31 0.915 E 1.00E+03 |
Q20 0.365 0.726 §
Qo 0.441 0.613 2
Qeo 0.546 0.518 g 1.00E+02 1.
Qso 0.65 0.446 e
Qoo 0.697 0.399
Q1o 0.727 0.367 1.00E+01
80 0.734 0.355 < 4 4 4
890 0.71 0.368 00%{ K o, 00@0& %,
Qs 0.669 0.402 g ’
S, 0.506 0.508 empirical [mm/y]
S, 0.714 0.397
S3 0.587 0.522
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Figure 7. Scatterplot of empirical and
regressionealculated values of averac
yearly runoff
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5.3.4 Review of the dependence of the selected statisticgaach descriptor

In this section we will have a general look at htwve coefficients attributed to each
descriptor vary depending on the flow statistic sdared, and attempt to explain their
hydrological meaning.

Table 5 and Table 6 present the rankings of sicgmite of the selected descriptors for each
flow statistic (determined on p-values), and thegression coefficients.

The strongest influence is that of climatic for@gndlean annual precipitation is the most
significant descriptor overall, with a higher sifjrance level for high flows than for low
flows, where it is surpassed by evapotranspiratiogh PE values mean low values of low
flow, and viceversa. On the opposite, low flows positively correlated to specific humidity
and temperature values, and this could be dueetodlative simplicity of the formula used
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here to calculate PE, that only takes latitude @ity temperature into account (Oudin et al.,
2005).

Table 5: Rankings of the significance of availabldescriptors for each flow statistic (threshold at
p=0.05).

Q_AV Q95 QlO Q20 Q30 Q40 QSO QGO Q70 QSO Q90 QS Sl S2 S3
P 1 4 2 2 2 1 1 1 1 1 1 1 1 1
PE 1 1 1 1 2 2 2 4 2
Hum 3 3 3 3 4 3 4 4 5 4 5
T 6 6 7 7 5 4 8 10 5
Wind 7 10 10
A 7 5 5 2 3
Slope_0.1 3 10 4 3 8 3 3 3
Slope_0.2 3 3 3 2
Slope_0.7 6
Slope_0.8
Slope_0.9 8 8 4 11
SlopeMin 5 6 6 5 7 7
Z 0.1 6
Z 04 5
Z 0.6 3
Z 0.9 4
Z_av 4
Zmax 4
URBAN 7 7 9
FOREST 5 7 5 5 6 9
FRUIT 8 10 9 10 6 7 9 8
HYBRID 2 4 6 6 8 9 10 8 8
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Table 6: Regression coefficients for each descriptand flow statistic

Q_AV Q95 QlO Q20 Q30 Q40 QSO QGO Q70 QBO Q90 QS Sl S2 S3
P 1.89 1.18 122 126 152 158 160 172 177 189 197 202| 163 207 193
PE -0.54 | -12.30 -10.80 -9.44 -7.69 -6.09 -550 -457 -3.92 -2.44 -1.27 -6.18 -2.50
Hum 7.52 711 6.07 520 4.00 385 344 322 263 1.36 430 261
T 2.22 184 153 120 100 0.81 053 0.37 0.86
Wind 0.20 0.13 0.12 0.17
A -0.11 -0.04 -0.05 -0.06 -0.10 -0.11 -0.15 -0.09 -0.20
Slope_0.1 0.19 0.20 0.20 0.18 0.11 0.17 0.18 0.25| 0.21 0.15
Slope_0.2 0.15 0.14 0.24
Slope_0.7 0.78
Slope_0.8 -1.51  -1.48
Slope_0.9 2.02 1.73 031 0.10 -0.14 -0.71
SlopeMin -0.12 -0.10 -0.12 -0.17 -0.08 -0.21
Z 0.1 0.22
Z 04 0.73 1.67
Z 0.6 -1.92
Z 0.9 -0.42
Z_av -0.82
Zmax -0.13
URBAN 0.13 0.11 0.07 0.07 0.06 0.04 0.04 0.03 0.02 0.03
FOREST 0.25 0.19 0.17 0.14 0.10 0.08 0.07 0.04 0.09
FRUIT -0.02 | -0.06 -0.03 -0.03 -0.02 -0.02 -0.03 -0.02 -0.02
HYBRID -0.18 -0.16 -0.11 -0.09 -0.06 -0.04 -0.03 -0.03 -0.03

All flow quantiles show a moderate positive deperadeto the lower quantiles of the slope
distribution, but if one looks at the descriptosgnificance, it is evident that this
phenomenon is more marked for the higher flowsfandnean yearly runoff. Our hypothesis
is that this dependence could be a byproduct of aiieria for choosing catchments:
excluding noticeable human influences means we fewer stations in the zones of aquifer
resurgence, and more upstream catchments thatvenage, tend to "leak" some water.
Among these, those who have "steeper flatlandsd teninfiltrate less that those who are

more markedly flat.

Regarding the dependence on the distribution aftiteiabove the sea level, no big trend is
shown, and there seems to be a contradictory depeedfor high flows: they seem to be
moderately related to the height of the bottomhef tatchment, but inversely related to the

average height, or the height of the catchmentsl he

Although small, the dependence on land cover efass quite interesting, and is generally
more marked for lower flows than for higher onesir @ypothesis is that land cover is
partially a consequence of the climatic and/or bialical character of a region, and then a
proxy for it. See for instance Figure 11: high eswf "hybrid" land cover are mostly found
in regions having an oceanic or partially oceafimoate.
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Figure 11: Map of the "hybrid" land cover class, exypressed as fraction of the catchment’s
surface occupied by it. Most of the catchments thare rich with this land cover are climatically
influenced by the Atlantic ocean.
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6 Using neighbour catchments residuals to improve the
efficiency of flow statistics regionalization

In this chapter we will show how geographical dista between catchment centroids can be
used as a proxy for those hydrological mechanidmas dre poorly related to the available
physiographic descriptors, or that cannot be ptgperodelled with regressions at the
national scale.

First, we will present the general Inverse Distavaghting interpolation technique we used
for this purpose, and discuss its results. Thenwillego through two techniques that can
further improve the results, based on the surfadeoa the spatial organization of catchments
(accounting for nested donor catchments).

We will also present a specific study (which wadlmhed in the Hydrological Sciences
Journal) concerning the possible selection of theod catchments in order to improve the

efficiency of residual interpolation.
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6.1 Residual's spatial structure as a descriptor of owdooked or not observable

properties

Here we call "residual” the following quantity:

J, =Q,/Q, Eqg. 5

where@i IS the regression-regionalized flow statistic &dis its empirical value (the one

calculated from the 20-year streamflow record).
If one looks at these residuals on a map, a spsttiatture is evident, and it is more evident

for those statistics which couldn't be reproducszlieately with a regression.

The spatial structure shown by the residuals islyiko be related to information that has
been overlooked in the choice of catchment desospisuch as more detailed descriptors of
the climatic forcings) or that is not easily obsstyand can be exploited to improve our

estimations at ungauged sites.

6.1.1 IDW interpolation

At an ungauged sitg, 5,— can be estimated ag:j = f(19i|i = neighbours)
This can be done with any spatial interpolatiorhtégue: here we've chosen to use inverse
distance weighting (IDW) for its simplicity, whiainakes it easy to modify the weights given
to each of the interpolated points according toitemdl criteria (such as whether a gauged
catchment is or isn't nested with the ungaugedewsterested in, as we'll see in paragraph
6.3).
In IDW, the weight assigned to each "donor" catchimes calculated as:
=1
BT

whered is the distance between the centroids of the dandrtarget catchments.

m|
Then, J; is obtained with a geometric mean:
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1
2w ! ! Eq. 6

The inverse distance exponent has been calculated with an optimization procedure
following a jack-knife technique: each catchmentum was treated as ungauged and its flow
values estimated for a given value @f A root mean square error on the whole dataset can

then be calculated an the inverse distance expdnanminimizes it is chosen.

6.1.2 Results

Table 7 shows the ‘Rand RMSE obtained before and after the IDW intatioh of the
residuals. A considerable improvement (high&raRd lower RMSE) is obtained on all flow
statistics, even if fof,we have a slightly lower Rafter the interpolation: in this regard, we
would like to remember that the inverse distanggoeent has been calibrated to minimize
RMSE, and it is not assured that this would alwiegsl to a better R

Table 7: Comparison in the results between regressi-estimated statistics and regression with
IDW interpolation of the residuals.

R’ RMSE
regression |reg.+IDW |regression |reg.+IDW
Av_Q 0.735 0.770 0.335 0.311
Qs 0.308 0.407 1.022 0.953
Q1o 0.310 0.362 0.915 0.839
Q20 0.365 0.349 0.726 0.680
Q3o 0.441 0.437 0.613 0.589
Qa0 0.546 0.586 0.518 0.484
Qso 0.650 0.710 0.446 0.404
Qeo 0.697 0.742 0.399 0.367
Qo 0.727 0.762 0.367 0.342
Qso 0.734 0.772 0.355 0.327
Qoo 0.710 0.758 0.368 0.335
Qos 0.669 0.728 0.402 0.363
S, 0.506 0.515 0.508 0.503
S, 0.714 0.762 0.397 0.360
Ss 0.587 0.678 0.522 0.452
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Figure 12 compares the regionalization of some #tatistics with regression only and with
IDW interpolation of the residuals. We have choseshow only three quantiles {§£Qso,
Qqo) since the behaviour is very similar on the otkatistics. It can be seen that the
additional interpolation narrows the scatterplaiucl and tends to mitigate the biases that

tend to especially affect catchments with lowewlo

6.2 Constraints on the surface of donor catchments

With a simple IDW method, it might happen that te@tchments (most typically nested

ones) with very different areas might have veryselgentroids, and get very high reciprocal

influence. This situation is potentially "dangergusr several reasons:

= one could logically expect the hydrological behaviomf a large catchment to be
different from that of a small nested sub-catchmahti secondary affluent, from a
"physical” point of view;

= also, statistical thinking easily leads to expéet if we class all our catchments by size,
we should observe much more variability (of sigrafit flow values, or of hydrological
behaviour) in the smaller catchments than in tiggdy one: big catchments are likely to
"average out" extreme behaviours and phenomenactmat on the other hand, be
observed at the local scale.

For these reasons, we decided to test limitationshe surface of donor catchments: if the

catchment was too small or too large compareddaitigaged receiver, it would not be used

as donor.

We optimized the values of the acceptable surfates minimizing RMSE, and identified an

interesting asymmetrical pattern: no catchmenimseéo be "too big" to be a donor,

suggesting that the smoother, "averaged out" bebawf the larger catchments provide a
safe contribution in the estimation of smaller onBst there is some improvement when
forbidding smaller donors.

Table 8 shows the RMSE on log-values for simple 12dd IDW with area-ratio constraint

allows to analyze this phenomenon for differentvfiguantiles
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Table 8: RMSE on log-values for simple IDW and IDWwith area-ratio constraint

RMSE RMSE
Simple idw Area constraint Area Ratio
Av.Q 0.311 0.141 11.905
0 0.953 0.539 3.226
5
0.839 0.467 3.226
QlO
0.680 0.365 5.076
QZO
0.589 0.299 5.076
Q3O
0.484 0.232 5.076
Q40
0.404 0.184 5.000
QSO
0.367 0.165 5.000
QGO
0.342 0.153 2.695
Q70
0.327 0.147 11.111
Q80
0.335 0.150 11.905
Q90
0.363 0.162 11.765
Q95
S 0.503 0.264 5.025
1
S 0.360 0.164 14.706
2
S 0.452 0.214 18.519
3

In addition to this, we have to say that the swefeatio constraint lost its interest if applied

after the donors list was cleaned from outliershvitie technique described in chapter 6.4.

This is very interesting, because it suggests that "dangerous” small donors are

systematically recognized as "outliers".

These results lead to think that both methods tatge extreme behaviours which are very

local (specific to small catchments), and can dad to the following interpretations:

= When estimating the hydrological properties of $mapstream ungaged catchments
having lot of downstream data, it is relatively yds provide reliable, averaged-out,
"safe” results, but there is a risk of under-estingauncertainties and extreme scenarios;

= Conversely, estimating downstream stations withtrepsn data is likely to produce
greater errors, and non-nested catchments of the sa&e will probably be more helpful

than a small nested catchment.
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high: Qgs, Qso, Qs
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6.3 Accounting for nested donor catchments

It might happen that an ungaged position where watwo estimate some hydrological
properties (a reference flow or the parametersnofiyadrological model), has one (or more)
gauged neighboring station(s) located upstreanowndtream on the same river network, so
that either the gauged catchment is a part of tigaged catchment we are interested in, or

vice versa. We will say that in this case, the galand the ungauged catchments are nested.

Some regionalization studies, especially the on&lbyz and Bléschl (2004) found that in a
spatially-based scheme, giving more weight to medtmors achieves better results that not

discriminating on this basis.

We then decided to test some approaches to acspaaifically for nested donor catchments.

We will present some of the formulations testedi #ren discuss which one performs better.

Each donor catchmeiitis given a weightv, that is then used to predict the residiiahs a
weighted average of the observed residudls If donori is nested with the ungauged

catchment we are considering , we will modifyas follows.

The simplest way to do it is by multiplying, by a certain factoa, to be calibrated:

1
a) w =al—
d

The exponentr which regulates the weight of the geographic distacan also be modified

1
b) VV' :daB

Area,
smaller catchment , and

We can also look at how much area the two catchensimre, f =
r eabi ggercatchment

then write the weighty;, as:

1Y\ .1
c) W = ——
=)

The presented approaches all provide a slight paence increase, but approach c) is clearly

offering better performances
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Table 9: RMSE on log-values of flow statistics whemsing simple IDW or IDW giving more
weight to nested catchments. The third column showtke esponent "a" presented at point )

RMSE RMSE
Simple idw Nested Exponent
Av.Q 0.311 0.147 22.174
0.953 0.568 8.967
Q95
0.839 0.497 8.874
QlO
0.680 0.403 10.930
QZO
0.589 0.330 13.719
Q3O
0.484 0.258 15.941
Q40
0.404 0.193 18.312
QSO
0.367 0.174 18.144
QGO
0.342 0.162 18.395
Q70
0.327 0.155 17.487
Q80
0.335 0.156 4.931
Q90
0 0.363 0.170 3.315
5
S 0.503 0.296 8.177
1
S 0.360 0.170 14.734
2
0.452 0.220 1.557
Ss
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6.4 Excluding outliers from the donors' list

One of the issues of every regionalization procedsirthe treatment of extreme cases, and
where catchments are used as donors, a questsas.ashould we eliminate the outliers from
our donors' list. If yes, which technique shouldwge to identify them?

The following article, published in the Hydrologicaciences Journal, in the special issue
"The Court of Miracles of Hydrology", addressesstipioint in the context of a two-step
regionalization of flow statistics that is in allings analogous to the one presented in this
chapter: the core of the method is the use of eessgpn formulation as first step, followed
by an IDW interpolation of the residuals as secstegb.

A few differences between the context of the ati@hd the rest of this chapter need to be
pointed out:

- Instead of FDC quantiles, the article focuses omeehflow statistics which are
particularly relevant in engineering practice inaftce, as they are commonly
prescribed by the French legislation as projedatées;

- The list of available physiographic descriptors duder the article was slightly
different from the one used for the regionalizatidrthe FDC quantiles, even if most
variables are present in both lists;

- The initial regression between the physiographsrdptors and the regionalized flow
statistics was not done using a stepwise regresapproach, and the statistical
relevancy of the retained descriptors was not eatll The regressions were instead
obtained empirically by testing all possible conations of “"reasonably few"
explanatory variables (no more than five) and thelecting the combination that was
subjectively judged to give the best performancetf@ least number of variables
used. The importance given to the use of "as feviabkes as possible” can be
explained as the primary objective of that work wagproduce a tool to be used in
common engineering practice: there was a fear @hdtoo complicated” formula
would never be used by operational colleagues. chiwéce of not using a stepwise
approach can be defended by saying that while iitgind criterion (statistical
relevancy) is objective and consistent, such a atke#till contains a great deal of
subjectivity in the choice of the relevancy lewebie accepted and of the algorithm to
be used (which combination of forward entry and kidards sorting?). In an
operational perspective, its advantage lies esdbniin the automatization and in the

possibility to treat a great number of variablesainess time-consuming way, a
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concern that was not existent given the relativethited number of variables and
combinations of variables to be tested.

- The database of precipitation and streamflow rexanded was, again, slightly
different to the one used for the rest of the thegirk. The one used for the main
body of this thesis is a more up-to-date versiogpeeially concerning the
interpolation of pluviometric records and the istan of previously unavailable
stations. Out of this renewed database, a newtgwleaf catchments has been made:
human influences have been re-evaluated, and itthasen to work only on records
that are reasonably complete over the same 20tye@rwindow, a criterion not used

for the previous work.

Outliers are commonly defined as the most extreatees of a sample. When referring to
catchments, one possibility is to define the sangdethe whole dataset, as done
commonly by hydrologists. This means that discaydiome outliers would automatically
imply a reduction of the dataset’s hydrological silgn which in our opinion can be
counter-productive for regionalization applications

In the following article we propose an alternativay to identify hydrological outliers:
the sample is limited to geographically close catehts, so that outliers will be defined
as those catchments whose behaviors differs thé fnroos their neighbors.

The effect of discarding donor catchments whichhiié second definition is a smoothing
of the hydrological variability the geographicabsp: local anomalies are ignored. While
the overall variability of the dataset is almosafiacted, such procedure produces more
conservative estimations of ungauged catchmeruw/ fitatistics, and, as a consequence,
a more robust regionalization (if the outlier distag technique is applied to the right

degree)
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6.5 Final considerations on the results obtained for ta regionalization of flow

statistics

In the last two chapters, we reviewed a regionatimamethod for flow statistics based on

regression with IDW interpolation of the residualBhis approach is advantageous if

compared with a method based on regression alodethés advantage is greater if one takes
in account the relative size of donor catchmentapared to the receiver, and their position
on the stream network, as explained in sectionsuGd?6.3.

From an operational point of view, it would be m&gting to test whether on a dense gauging
network such as the one France has, similar resalikl be obtained with the use of less

catchment descriptors.

From a scientific point of view, we remark that thest regression performances are obtained
on average annual flows and on higher-than-medam duantiles, while low flows tend to
get poorer ones. This result and the consideratioade in paragraph 5.3.4 lead to the
conclusion that we are quite successful at expigiriiow statistics that are more directly
linked to the climatic input and to the short-tecatchment response, while our failure on
low flows is probably linked to the lack of adecgiaiescriptors to characterize the long-term
hydrologic response of our catchments.

In chapter 10 we will be using regionalized flowatgtics to constrain the regionalization of a
rainfall-runoff model. In that case we will useegression + IDW approach (as an example
of regionalization on a dense network) and a regpaswithout IDW (as an example of

regionalization on sparser networks).
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Part 3 — Regionalization of rainfall-runoff models— direct

methods

This part focuses on the regionalization of raiafahoff models withdirect methods, i.e.
methods that use the available physiographic, ¢iorend spatial information to identify
good donor catchments from which parameter setb@m®wed. This exercise differs from
the way in which physiographic and climatic infotina are used when regionalizing flow
statistics, which is essentially regression-based.

Chapter 7 deals with a method based exclusivelyhysiographic similarity;

Chapter 8 presents two methods (intersection-basddinion-based) to combine the benefits

of spatial proximity and physiographic similarity.
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7 Physiographic similarity regionalization

In this chapter, we explore regionalization meththdg are based upon the construction of a
similarity metric, which is used to select apprapgidonor catchments: as seen in section 4.5,
this is probably the most common regionalizatioprapch for rainfall-runoff models.

Such metric can be built in several ways using dkailable physiographic and climatic
descriptors: here we will present two possible oésh that we will call PCA-based (based
on a preliminary selection of explanatory variahlegng PCA) and backwards-sorting (based

on backwards sorting of explanatory variables).
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7.1 Introduction

In this section we will present two methods to #ud site similarity measure out of
physiographic descriptors.

In any regionalization exercise, the successfulafgghysiographic information is attractive
for two main reasons:

- A physiographic-based site-similarity measure casilg be confronted with one's
understanding of the hydrological processes, abfip@site of spatial proximity.

- One would expect that a similarity metric relying physical attributes would be
more robust when applied to a scarce network ofedustations, if compared to
spatial proximity. This is a reasonable assumptexgn though not always verified
(Oudin et al., 2008).

The construction of a similarity metric based orygbgraphic measures faces a few main
issues:

- The selection of hydrologically relevant descriptorf a non-relative descriptor is
used during the construction of the similarity negtit will at best have a neutral
effect, and, at worst, a very detrimental one.

- the ranges of variation and the distribution ofesleed values can differ significantly
from one descriptor to another. This poses a prolilden one tries to build a metric
based on such variables. To overcome this proldeneral approaches are possible:
here we will, for both methods, normalize the dggors so that their mean equals 0
and their standard deviation equals 1 (an assumpimade that the distributions of
the observed values have similar shapes)

- Physiographic descriptors are often correlated éetwthem to some degree. This
implies that some catchment characteristics might\eeremphasized in the similarity
metric, unless an appropriate weighting/variabled®n scheme accounts for this.
Correlated descriptors also implies that the simtylanetric shouldn’'t be thought as
an Euclidean distance, even when it is built astifvas one, unless a set of
uncorrelated explanatory variables is derived ftbmcorrelated descriptors (through

e.g. Principal Component Analysis).

7.1.1 Common points of the tested regionalization methods

It is important that our readers are aware of theegal scheme shared by all the tested

regionalization methods.
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In all of the following paragraphs, we will testcbaof our catchments as if they were
ungauged, in a jack-knife fashion. At the same time will suppose that all the remaining
catchments are known, unless when challenging hadest robustness with the "metrological
desert" crash-test.

The point of each of the regionalization methodstet# is to select a group of donor
catchments: these are supposed to be hydrologsiatijar to the one we treat as ungauged,
i.e. a parameter set calibrated on one of the dosbould give comparable results on the
ungauged.

Once a set of donors is chosen, a simulation iswith each of the donor's calibrated
parameter sets, then the obtained time seriesedmtlow are averaged: the obtained record
is the candidate simulation for the pseudo-ungauggdnments and its efficiency will be
calculated. This procedure is followed insteadhef &averaging of parameters since Oudin et
al. (2008) showed, using the same model and a siemjar database, that flow-averaging
gives consistently better performance than pararasteraging

For each of the proposed methods, the optimal numbdonor catchments is set by using
the median efficiency obtained on the whole datalzesa criterion.

The criterion being used is C2M, a bounded versibthe Nash-Sutcliffe efficiency whose
maximum is 1 and whose minimum is -1, calculategqumare-rooted flows.

CoM = NE Eq. 7
(2—NSE)
While representing the same concept of the NSEo(aparison between the square errors
obtained by a simulation and those obtained byvanage of the modeled time series), C2M
has two practical advantages:
- it can be averaged (especially useful when the ctibge is to get "less bad"
simulations, rather than improve the peak perfoicaah
- due to the re-scaling effect, higher performanacesspread over a broader range of
values and can be better evaluated.
See Mathevet et al.(2006) for more details onchtsrion.

7.2 Method based on Principal Component Analysis

We first present a method that we call PCA-baseazhie it does not attempt to judge the
"hydrological value" of the available physiographand climatic descriptors when
constructing the similarity metric. The only treamb that is applied to explanatory variables
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is Principal Component Analysis, used to ensureah&uclidean distance can be "properly”

calculated.

7.2.1 Preliminary selection of explanatory variables

This method is characterized by the fact that wan'ditry to select the best possible
descriptors to be used for the regionalization ,tésk rather to just discard those that are
clearly not useful.
The selection criterion was thus built in compamiseith a random choice of donor
catchments, with the following procedure:
- For each catchment treated as ungauged, ten diffeachments were randomly
chosen from our dataset and used as donors.
- The calibrated parameter set of each donor was tesedn a simulation on the
pseudo-ungauged catchment.
- The time series of streamflows obtained with thegdenulations were averaged, and
an efficiency criterion (C2M on square-rooted flgwsas calculated.
- The procedure was repeated on the whole dataserasetrmes, with different
initializations of the random selection
- The average efficiency of all the simulations wasained as the benchmark to

consider a physiographic descriptor acceptable

Each descriptor was used in turn as a similaritpsnee. Ten catchments having the closest
descriptor values to the one treated as ungaugedidw® used as donors, ten simulations
would be run and an average time series was olotaifiee average efficiency obtained on
the dataset was then compared to the random benkhm@ad the descriptor would be

discarded if worse than this random benchmark.

As one can see in Table 10, only the land-covessclfuit" gives results that are worse than
a random selection of ten donors, and has not bsed in the construction of the similarity
metric described in section 7.2.2. It is interggtin note that this land cover class is only
found in significant extensions on very few catchiseof our dataset, and this alone is a
good reason for its exclusion: for the many catami@&ho have a modest or null coverage
of such a class, it won't provide a reliable intbcafor site-similarity of any kind, even
outside of the context of a hydrological study.

Another interesting point is the relatively highleneance of topographic descriptors,

compared to climatic ones. This, put into the pecspe of the results obtained for flow
-94 -



statistics, tends to reinforce a belief that mquielameters are much less climate-dependent,
which is quite reassuring. See section 2.3 forildeté each physiographic descriptor.

Table 10: Average efficiencies obtained when usiranly one physiographic descriptor to define
site-similarity

Descriptor Average efficiency

A 0.385
Zmax 0.371
SMin 0.371
Z_0.6 0.364
Z 04 0.362
Z 09 0.359
SMax 0.358
Z 0.7 0.358
Z 0.2 0.357
SAv. 0.357
ZAv. 0.356
OTHER 0.355
P 0.354
S 04 0.353
FOREST 0.353
Z 0.8 0.353
S 0.3 0.353
Z_0.5 0.353
S 0.1 0.353
Wind 0.352
S 0.9 0.352
S 05 0.352
S 0.6 0.351
S 0.2 0.350
Z 0.1 0.350
HYBRID 0.350
DD 0.350
T 0.349
Z_ 0.3 0.348
S 0.7 0.348
Hum 0.347
PE 0.347
URBAN 0.344
AGRIC. 0.344
S 0.8 0.343
Zmin 0.341
Random Donors 0.322
FRUIT 0.316

7.2.2 Principal Component Analysis as a tool to overcontige issue of correlated

descriptors

Once the unnecessary descriptors were discardedisslue of correlated descriptors was
solved using Principal component analysis (PCA)APE a well known mathematical

procedure that uses an orthogonal transformatiaonwert a set of observations of possibly
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correlated variables into a set of values of uredated variables called principal components.
The number of principal components is less thaeqmal to the number of original variables.
This transformation is defined in such a way tihat first principal component has as high a
variance as possible (that is, accounts for as nofithe variability in the data as possible),
and each succeeding component in turn has thegtighgance possible under the constraint

that it be orthogonal to (uncorrelated with) theqading components.

The first seven principal components (explaininge3&f the descriptors’ variance) have been
derived from the original set of descriptors andduso build a similarity metric. Since the

principal components are orthogonal by definitimme can use them to calculate an
Euclidean distance between data points (in our,Gas@ngauged catchment and a potential

donor)

n Eqg. 8
d :JZ(pc.,u - pc,,)? G
i=1

Where thepgc, , is the i-th principal component for the ungaugettiument we are interested

in, and pc, . is the i-th principal component for candidate doc&tchment ¢

7.2.3 Results

Figure 15 shows the general performance of the B&3ed regionalization. The top left chart
shows the median C2M efficiency on square-rootesvdl obtained when using different
numbers of donors. It appears that the optimal rrmabdonors for such a method is six, and
in this case the median C2M equals 0.56 (correspgriid NSE=0.72).

The second chart shows the complete distributioeffifiencies obtained on our database
catchments, when using six donors and the PCA-basetthod (black solid line). Only
positive efficiencies are shown.

Two grey lines are added to the plot as benchma&ksthe rightmost side we have the
performance of a calibrated model (solid lineyepresents the performance of an ideal (non
existent) regionalization method that would be atdetotally substitute the information
contained in streamflow time series.

On the other side we have a "minimum demand" beacknrepresented by a random
selection of ten donors (dashed line): it represanhethod that is truly blind to the ungauged

catchment considered.
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Optimal number of donors Distribution of efficiencies
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Figure 15: PCA-based Regionalization performanced.op left, median efficiency per number of
donor catchments used. Top right, distribution of &iciencies compared to a random selection of
donors (dashed line) and calibrated model (solid gy line). Bottom left, performance in a
"metrological desert" situation.

These benchmarks are extreme and all regionalizatiethod should fall between them:
nevertheless, they should help judging regionabraquality.

Figure 15 shows that there is a large room for y@egfor the regionalization approach, since
its performances are intermediary to the two beraskel Besides, the approach does not
show a remarkable robustness: excluding donorslOekm radius leads to a strong decrease
in efficiency (near the efficiency of random donomseaning by the way that the similarity
approach tends to select geographically close doatchments.

Last, Figure 16 provides an outlook at the shapthefhydrographs obtained in calibration

and with the regionalization model.
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Figure 16: Time-series of observed, regionalized dnsimulated (with prior calibration)
streamflows on three example catchments, of good 881010) "median" (K2363010) and poor
(H6402030) performances
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7.3 Backwards sorting method

In this section we present a backwards-sorting ateflor the construction of a similarity
metric. In this case, the available explanatoryiades undergo a "backwards sorting”
selection, aimed at retaining only the most "hyogatally meaningful” physiographic and

climatic descriptors.

7.3.1 Variable selection algorithm

In this method, the selection of physical descrptwas made on the basis of the quality of

the obtained regionalization.

As a first step, available descriptors are nornealiz

d,-d Eq. 9
1] 0_

Whereds ; is the normalized value of descriptdior catchmenf, d, ; is the un-normalized

value, d, is the average ofi, over the dataset, ang| is its standard deviation.

A "pseudodistance” is then built using mbvailable descriptors, as if they were orthogonal:

p :Jz(ds,u ~ds )’ Eq. 10

i=1

where ds ,is descriptor i for the ungauged catchment u, asdis descriptor | for the

candidate donor catchment c.

A regionalization procedure using the ten mostlsintandidate donors is run and its average
efficiency is calculated.

The second step involves running the same procedhig time not using one of the
descriptors. This is repeated until all combinadiafin-1 descriptors have been tested, and
the one giving the best performances is kept aaeedescriptor list.

The whole procedure is iterated until we only haxe descriptor left. At this point, if at each
iteration the retained combination ofm descriptors was noted along with its average

efficiency, the selection of the optimal pool ofyplographic descriptor is trivial.

Table 11 shows a list of the descriptors disca@teshch iteration, and the average efficiency
obtained with the remaining ones. As one can $eemaximum efficiency has been reached
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at the 1Y iteration, so the retained similarity metric usies 26 remaining descriptéréhe

descriptors in italic characters have been remdnged the list).

Table 11: List of discarded descriptors at each it@ation

Discarded
Iteration descriptor average C2M
1/Z 0.9 0.4675
2| OTHER 0.4683
3 | SMax 0.4694
4 | AGRIC. 0.4701
512_0.2 0.4706
6|S_0.1 0.4707
71S_0.6 0.4708
8| HYBRID 0.4715
9| DD 0.4725
10 | FRUIT 0.4729
11/Z 0.1 0.4730
12|S 0.7 0.4721
13/S 0.3 0.4724
141S 0.2 0.4723
15(Z_0.6 0.4720
16(Z 0.3 0.4718
17|S 0.4 0.4722
18(Z 0.4 0.4728
19({Z 05 0.4727
20 | PE 0.4722
21|z 0.7 0.4715
22| T 0.4720
23| ZAv. 0.4710
24 | Zmax 0.4705
25|S_0.8 0.4692
26|S_0.5 0.4684
27 | URBAN 0.4652
28 | SMin 0.4652
29 | FOREST 0.4638
30|Z_0.8 0.4623
31| Wind 0.4531
32| DD 0.4435
33|P 0.4269
34|S 0.9 0.4118
35| Zmin 0.3935
36 | Hum 0.3854
371A 0.3494
7.3.2 Results

Figure 17 summarizes the performances of the pregamgionalization method with the

same scheme used in Figure 15.

2 1t should be noted that nothing ensures that éheelected descriptors are uncorrelated. If they's the resulting dissimilarity measure
can’t be considered as an Euclidean distance.
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In this case, the optimal number of donor catchsen¥. The distribution of the efficiencies
is slightly, yet consistently better than the otamed with the PCA-based method, with a
median C2M of 0.57 (NSE=0.73) and also a slightaatlvge in the “metrological desert”

robustness test.
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Figure 17: Backwards-sorting Regionalization perfomances. Top left, median efficiency per
number of donor catchments used. Top right, distrilntion of efficiencies compared to a random
selection of donors (dashed line) and calibrated ndel (solid grey line). Bottom left,
performance in a "metrological desert" situation.
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8 Joining spatial proximity and physiographic similar ity

In this chapter, we present and evaluate two appesa methods allowing a joint use of
spatial proximity and physiographic similarity:
= theintersection-based method, based on the assumption that good donor catclsment
are likely to be, at the same time, similar andggaphically close to the ungauged
catchment of interest. Thus, the best donors wilbihg to the intersection of the two
ensembles ;
= the union-based method, based on the assumption that the two approactess m
identify good donors independently. Thus donord el best identified by the union
of the two ensembles.
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8.1 Introduction

In the previous sections we covered two regionatima methods based on pure
physiographic similarity. As already said, our atten has been focused on such methods
first because of their expected robustness.

Another reason why an hydrologist should appreqguugsical similarity more than spatial
proximity is that it is less "black box": it doestnreally provide any outlook of the
hydrological processes that dominate the catchndrascertain region, but at least it gives a

possibility for a careful, indirect, rough intergagon.

However, spatial proximity should not totally besmiissed. On one side, there are situations
(for instance very dense gauging networks) wharpetformances might be superior to those
of approaches relying on physiographic measuresth®mther, as Figure 18 shows, it is to
some extent complementary to physiographic sintyari

In Figure 18 we can see a grey dashed line repragethe performances of a pure spatial
proximity regionalization on our dataset (usingrfdonors), a black dashed line representing
the performance of the backwards-sorting physidgcapimilarity covered in section 7.3,
and a black solid line. Such black line representdeal (non-existent) method that would,
for each ungauged catchment, be able to decideheshhen that particular case spatial
proximity would give a more accurate guess tharsjggraphic similarity, or vice-versa. Its
performances are clearly superior to the otherrvethods used alone. Of course, the reader
should be aware that this example was construgtédheating” and is only used to show the

complementarity of the two original regionalizatiapproaches.

While we do not expect that a realistic method daxdme close to the performances of the
"ideal" case, we think that Figure 18 clearly shdiaes interest of investigating methods that
combine some degree of physiographic similaritygagay to ensure robustness and for its
"informative" value) with some degree of spatiabpmity (whose only value is an eventual
increase in performance). The next paragraphsaowiler two simple propositions of how

such a method could be constructed.
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Figure 18: Performances of spatial proximity and plysiographic similarity methods (dashed

grey and dashed black lines) confronted with the p&rmance of an ideal method perfectly
combining the strenghts of the two approaches (sdliblack line)

8.2 An intersection-based method

8.2.1 description

The idea behind this method is that good donorhcaénts are likely to be, at the same time,
similar and geographically close to the ungagedredooking at.
To select donors that are close and similar, wegwded as follows:

- The number of donors to be used was set. Let ufosdlge sake of this example that
we wanted to use 10 catchments.

- Each time we considered a catchment as ungaugederiaining ones were ranked in
two lists of donors. The first was ranked accordinggeographical distance, the
second was ranked for physiographic similarity ifathe backwards-sorting method
shown in section 7.3

- We looked at the closest 10 catchments and at tdst similar 10 catchments. If these
two groups contained the same 10 stations, thesévbe the retained donors.

- In case we didn't have the same 10 catchments @ntwlo groups, we would
progressively increase the size of the two poolsasfdidates: for instance, the 11

closest one and the 11 most similar.

- 105 -



- We would look at the intersection of the two pogligroups (i.e. catchments
appearing both in the group of the closest andhéengroup of the most similar ones).
If 10 catchments were to be found in such an ietdisn, we would stop and retain
these 10. If not, we would keep increasing thessafethe two candidate groups until

10 candidates could be found.

8.2.2 Results

Figure 19 is a summary of the performance of thergection regionalization method.

The optimal number of donors is six, with which adian C2M of 0.58 (equivalent to a NSE
of 0.73) is obtained.

The performance gain, compared to pure physiogcagmilarity, is quite small (from 0.574
to 0.578). However, we actually notice a perforneadecrease in the "metrological desert"
robustness test. While this result should be exgokeas an effect of bringing spatial proximity
into the regionalization method, it is quite strqpare similarity already works better when
the closest catchment is more than 20 km away) raalles the proposed "intersection”
method a poor choice.
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Optimal number of donors Distribution of efficiencies
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Figure 19: Combining spatial proximity and physical similarity, results of the intersection
regionalization method. Top left, median efficiencyper number of donor catchments used. Top
right, distribution of efficiencies compared to a mndom selection of donors (dashed line) and
calibrated model (solid grey line). Bottom left, pgformance in a "metrological desert" situation.

8.3 A union-based method

8.3.1 Description

This approach is based on the idea that —for otasd& pure spatial proximity and pure
physiographic similarity will identify a certain mber of "good" donor catchments when

used alone.
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Pure spatial proximity works best (on our databag#) four donor catchments, backwards-
sorting physiographic similarity works best with d@nors. We then simply pasted the two
donor lists, obtaining a group of 15 donors. Noticat, when a catchment is both in the 4

closest and in the 11 most similars, it is couriade.

8.3.2 Results

Figure 20 shows two charts about the performancehef union-based regionalization
method: the distribution of the efficiencies ob&non the catchments we tested as
ungauged, and the median performance in the "nogfical desert” robustness test. In
comparison to the previously treated proposalsgdienct test different numbers of donors.
The median performance obtained is 0.58 in C2MarMNSE of 0.74. This result is only
marginally better than the intersection-based mgjination: however, the robustness of this
approach seems to be much more satisfying. Purgqargphic similarity would only have a
clear advantage on catchments who don't have amgradoser than 180 km, while when at

least one donor closer than 100 km is availabkeputiion-based method is superior.
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Figure 20: Combining spatial proximity and physical similarity, results of the union

regionalization method. Left, distribution of efficiencies compared to a random selection of
donors (dashed line) and calibrated model (solid @y line). Right, performance in a
"metrological desert" situation.
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8.4 Comparison of the tested regionalization approaches

Figure 21 and Figure 22 allow a comparison of tleefggmances of the tested direct
regionalization approaches. All approaches perfeemny similarly for the better modelled
catchments, with the most noticeable differencemdoeoncentrated between empirical
frequencies 0.1 and 0.4.

Overall the "union" combination of spatial proxigniand physical similarity performs best,
even if it is not very far from the other threetées methods, and constitutes a marginal
improvement over a backwards-sorting based sintylapproach, despite a theoretically

much bigger margin for improvement.
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Figure 21: Distribution of the performances of thetested direct regionalizations, compared to
two benchmarks: random donor selection (dotted grejine), calibrated model (solid grey line)
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All methods appear to have similar robustness, wilie possible exception of the
"intersection” one (which probably relies too mumh spatial proximity). In all cases, a
noticeable improvement over spatial proximity cambticed.
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Figure 22: Comparison of the performances of the wed direct regionalizations under the
"metrological desert" robustness test
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9 Sensitivity analysis of regionalization methods: ho w do
they react to the lack of similar catchments?

In this chapter, we will present three assessmenhtshe robustness of the proposed

regionalization methods, based on a simple butineguest called the “metrological desert”.
This test is based on the elimination from the doisi of those catchments which are

geographically closest or most similar to the reeecatchment.

- 113 -



9.1 Introduction

In this chapter we will resume the results of timetrological desert” test introduced in
section 3.3, and propose its extension to the eétron of physiographically similar

catchments.

9.1.1 Results of the elimination neighboring donors

Figure 23 shows the sensitivity of the four regi@aion approaches presented in chapters 7
and 8 to the elimination of the closest donors. &ach approach, three lines show how the
values of the 0.9 quantile, median, and 0.1 quaofithe performance distribution decrease.
Interestingly, the differences in regionalizatiambustness seem to be much greater on the
worse-modeled catchments than on the rest of staldition: on the 0.1 quantile, it is clear
that the “Intersection” approach (which has a gjemt element of spatial proximity among
the tested alternatives) is by far the less robwkile the remaining three methods have
similar performances (with the backwards-sortinghrad performing less badly). Looking at
the median performances, the relative lack of rolmss of the “Intersection” approach is
confirmed, even if the differences between regiaasibn methods are much smaller, to the
point that the remaining three approaches can bsidered to be equivalent. Finally, the 0.9

guantile shows a slight disadvantage of the PCAdtbasmilarity approach.
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Overall, we argue that the most robust approachesviacing a lack of close donors are the

one based on backwards-sorting similarity and thredh” similarity/proximity hybrid, but it

is not possible to detect a significant differebeéween the two.

- 115 -




9.2 Sensitivity of regionalization methods to the laclof similar catchments

In analogy with the “metrological desert” approacte tested the sensitivity of
regionalization methods to the removal from theaget of donors whose characteristics were
closest to the ones of the receiver catchment. st was repeated individually for each
physiographic descriptor, calculating the differeretween the receiver’'s and the potential
donors’ values and eliminating the donors who liellow a certain threshold. Although this
procedure is quite redundant, we think that exclgddonors on the basis of a chosen
similarity metric wouldn’t yield “neutral” resulté.e. we expect that methods which use the
closest similarity metrics would be the most aféeijt

The thresholds to be tested have been determinedidaring that most physiographic
descriptors are roughly normally distributed. Cayusmtly, we decided to set the maximum
threshold to be tested for each physiographic chariatic to half of the descriptor’s standard
deviation, as this would eliminate nearly 40% oé thonors for an average case, and we

thought that it was not necessary to test an eaetheln constraint.

9.2.1 Results

For ease of reading, results will be presentedraplgc form in appendix 14, while this
paragraph will provide an overall review.

The overall sensitivity to the lack of similar doacseems to be comparable to what is
observed when we excluded geographical neighbaureven lower if one considers that in
that case we were excluding about 20% of the doingtead of 40%). Other similarities can
be found if one notices that the sensitivity of tmedian and lower quantiles of the
performance distribution seems to be greater tlbarthie upper quantiles, both in terms of
average performance decrease and in terms of@liiferbetween one regionalization strategy
and another.

Interesting trends can be observed if one consittersperformance of the “intersection”
method, which is the one containing the strongesbhpromise with spatial proximity, in
comparison with the other approaches. This methemins to have comparable, or even
slightly better results when donors are eliminatecthe basis of climatic descriptors and of
drainage density; on the other hand its performanae generally inferior when the
sensitivity to altitude, slope, and some land cosasses quantiles is considered. In our
opinion, this might indicate that altitude and €ognd some kinds of land cover are more

spatially correlated than other descriptors, and esnsequence those donors who are similar
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when considering these properties are more likelget geographically close to the receiver
catchment.

Catchment area constitute an exception to the abdescribed scenario, as the
regionalization’s sensitivity to the lack of dona@tsaring similar characteristics seemed to be
higher for these descriptors than for the rest.ckdaent area appeared to be the most
significant among the available descriptors whemstwicting hydrological similarity
measures, so the high sensitivity to the removadloofors having a similar size to the receiver
is no surprise. Furthermore, its distribution owar dataset is log-normal, which means that
on average, more than 40% of the available donmrselminated when using the 0db
threshold. A similar behaviour is observed whenlwkag donors which share a similar
drainage density with the receiver: in this casg could invoke again the strong spatial
organization of drainage density, since DD did appear as a very significant descriptor

when constructing hydrological similarity measures.

9.3 Sensitivity of regionalization methods to threshold of model efficiency

In this section we wish to examine the reactioregionalization methods to the lack of well-
modelled donors: how important are they to obtaiadyregionalization results? Similarly to
the procedures applied in the rest of this chapser,will exclude from the donor list
catchments whose calibration efficiency exceedsrtam threshold, which is moved lower
and lower between C2M=1 (perfect simulation) an& Qpoor, but not catastrophic

simulation).

9.3.1 Results

As it can be seen in Figure 24, the negative impéache lack of well-modelled donors is
equally extreme for all regionalization methodstdds to the point that in our opinion
discussing the relative merits of each of themuichsa context does not make sense.

For all methods, the decrease in performance sedra toncentrated on the “medianly” and
worse regionalized catchments, especially when omaving calibrated a performance
between C2M=0.9 and C2M=0.65 are excluded. Thesadaries contain roughly 60% of
the available donors, as only 1.5% of the catchmémtour dataset yield a calibrated
efficiency higher than 0.9, and 38% have a caldatagfficiency lower than 0.65. But in
comparison, randomly removing 60% of our donors lekdwave a much milder impact, as
suggested in Figure 26, which leads us to conctbdethe presence of a majority of well-

modeled catchments in the donor list is requiredlitain satisfying regionalization results
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for most ungauged catchments. The impact on theerugpantiles of the regionalized
performance distribution is still very strong bes$ extreme: however, our hypothesis is that
these few “lucky” cases can’'t be expected to yaldeptable results for the right reasons.
The observations made in this test can be corrtddbravith the results of a similar
experience, illustrated in Figure 25. In this cabe worse modeled catchments, up to an
efficiency threshold, are excluded from the reglimagéion of the GR4J. This operation leads
to a mild decrease of the median performanceslifaegionalization methods tested, until a
threshold corresponding to C2M=0.5 is reached: ,ttee regionalization performances
decrease steeply as some of the better-modeledrdd@me excluded. These results are
consistent with a similar test exposed by Oudialef2008), with the difference that in that
case the exclusion of badly modeled donors injtidd to a mild increase of the median
regionalization performances, and that the steejformeance decrease occurred when a
threshold of C2M=0.67 is reached.

The upper and lower quantiles of the regionalizesiggerformance distribution also confirm
the general trend of performance decrease wheny badideled donors are excluded,
although with some differences: the upper quantdlesot seem affected until donors having
an efficiency greater than C2M=0.8 are excludedilenthe lower quantiles are equally

affected throughout the whole test.
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Sensitivity to the exclusion of well-modeled donors
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Figure 24: Sensitivity of several regionalization pproaches to the lack of well-modeled donors.
Upper dashed line: 0.9 quantile of the performancedistribution. Continuous line: median.
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Sensitivity to the exclusion of badly modeled donors
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Part 4 — Regionalization of rainfall-runoff models— the indirect

path

In this part, we present the results of what weehakosen to call the indirect path to
regionalizing a hydrological model. We see the fwbof model parameterization on an
ungaged basin as a problem of choosing one or aleparameter sets in a library. The
originality of the method presented here lies ie flact that we rely on a previously
implemented regionalization of statistical flow was$ (i.e. flow quantiles) to constrain the
choice of the parameters from the library: only seagparameter sets allowing to best

reproduce the regionalized flow quantiles will b&ained for rainfall-runoff simulation.
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10 Direct and indirect regionalization

In this chapter, we first justify the reasons whg thought an indirect approach could be
advantageous, in relation with the existing literaton the subject. We then identify the
principal issues that we'd like to explore con@egnthe subject of indirect regionalization,

give the details of the regionalization proceduseused, and comment the obtained results.
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10.1 Introduction
When estimating model parameters at an ungaugetido¢ several approaches are possible.

The two most common approaches are:

- Fitting a regression between model parametersbfedid at gauged catchments) and
catchment physiographic descriptors;

- Transferring (or interpolating) model parametersnfr proxy catchments, i.e.
catchments that can be close in the geographicesfsmatial proximity) or in a

geographic-physiographic space (physical similarity

These two methods have one point in common: thetotregionalize the model parameters
in a single step. We could call thefmect regionalization methods.

On the other hand, some authors recently advoeateatlirect regionalization method. This
method consists in first regionalizing flow statistthat synthetically describe the hydrologic
response of the ungauged catchment. In a secoed pimnameter sets are chosen according to
their ability to reproduce the behaviour outlineg the regionalized statistics. Throughout

this report, we will refer to such a method asratirect regionalization.

10.1.1 Why could an indirect regionalization be advantages®
Direct regionalization methods face two kinds of difficedt

- calibrated model parameters usually show littleyorcorrelation with physiographic
descriptors: as a consequence, regressions ugigtlypoor results;

- approaches based on parameter transfer from pratchroents perform better than
regressions, but are less robust than them ingtstese situations. Their performance
is more affected by the presence (or absence)awd'glonors” in the dataset, for the
ungauged catchment considered.

In comparison, the regionalization of flow statistiseems to be an easier task. As a
consequence, the idea lying behind indirect redipaizon is that if one could successfully
identify efficient parameter sets with the useloff statistics, such a method could be used

later to regionalize model parameters.
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The overall scope of this chapter is to test tsuanption, i.e. to outline if and under which

conditions an indirect regionalization approachlddae a better choice than direct ones.

10.2 Review of the relevant scientific literature

10.2.1 How does the work presented in this chapter relat¢he existing literature?

In section 4.6, we have mentioned a few studiepgsing indirect regionalization methods.

All provide similar frameworks for selecting modphrameters based on their ability to

reproduce some flow response statistics, and génhagree on the reasons for which such a

procedure could be preferable over a direct trartdfenodel parameters.

Another common point is that all of the presentedthuds select a range of feasible
parameter sets rather than one set: however, liloisec somehow limits the possibility of a
comparison with traditional direct regionalizatiorethods. Also concerning the assessment
of indirect regionalization's performance, it ist mtear if such methods can perform well
when evaluated with traditional criteria (as thesNand Sutcliffe efficiency) or if their
interest is the consequence of a change of paragignodel evaluation. In this regard, we
feel that the assessment of indirect regionalinatioperformances in a "traditional”
framework (one streamflow simulation, a single-chbye evaluation criterion based on the

comparison of simulated and observed hydrogragh®quired as a preliminary.

Another question is raised by a slight disagreenmenihe use of indirect regionalization in
the four papers: while Yadav et al. (2007) and \&tbsirg et al.(2010) approach it as a form
of calibration, and do not couple it with otheramnhation, Castiglioni et al. (2010) and
Bardossy (2007) explicitly or implicitly advocates iuse in combination with other methods
to constrain the feasible parameter spd&e.indirect regionalization methods perform
acceptably on their own, or should they be rather @nsidered as an additional criterion

in a regionalization method combining different appoaches?

10.3 Issues of concern for implementing an indirect re@inalization scheme
Here, we list the main issues which need to be emd&d when planning an indirect

regionalization scheme. The questions listed hexdéuather dealt with in section 10.5.

10.3.1 How does the first level of regionalization affettte second?
Obviously, since the indirect regionalization commes two steps, the accuracy of the first

step will have an impact on the efficiency of tve@ll scheme.
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We believe that, when evaluating the performan¢es andirect regionalization scheme, this
point should not be overlooked: we should not dd a® were always capable of estimating
flow statistics with small errors, even if this miageed be the case for some catchments. In
this chapter, we will evaluate the impact of twdfetent flow statistics’ regionalization
approaches on the overall performance of a modeh@huged locations. A comparison with

the ideal case in which flow statistics could benested without errors will also be provided.

10.3.2 How to constrain the initial choice of possible paneter sets?
Looking at the literature, one can see a remarkabfeerence in how an indirect

regionalization is used to identify candidate pagtensets:

" In the case of Yadav et al. (2007), candidate patansets are picked from a broad
range of possible values, whose limits are seti@ipand should reflect the expected
range of variation of each model parameter oventhale study area.

. On the contrary, Bardossy (2007) starts from a moahrower choice of possible
parameter sets: the criterion used is that cangligietis should perform acceptably on a
selected “donor” catchment, which is supposed tohpeérologically similar to the

ungauged catchment of interest.

In this chapter we will, as a first step, test gneposed indirect regionalization using all the
optimal parameter sets of the catchments considasegauged. We think this is the most
challenging situation for such a method, practycatiquivalent (given the number of
catchments in our database) to a case where pamasets would be generated from an a
priori distribution of "likely" values. At the santeme, it is the only test we can think of that
would address the performances of such indirectonadjzation independently of the

criterion used to further constraint the parameberice.

In a second step, we will try to constrain the choof candidate parameter sets with an
additional criterion based on spatial proximitynsarly to what was done in sections 6 and
8, as an example of how the combination of differegionalization approaches can improve

performance.

10.3.3 Can such a method be robust?
As a final point we would like to address the rdhess of the indirect regionalization

method, i.e. how its performance is affected by dhality and quantity of available data.
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More specifically, since we will work on data fromvery spatially-dense gauging network,

our attention will be focused on what happens wherdensity of donors is reduced

10.4 Method

10.4.1 General choices

= Context
We evaluate the performance of an indirect reginaabn method when applied in the

following context:

- A lumped four-parameter model (GR4J) is used,;

- We assume that an ungauged catchment is one feahwée do not have streamflow
measurements However, physiographic descriptovwgeeisas precipitation input time
series are available;

- The objective of the regionalization is to prodoce streamflow time series;

- The efficiency of each simulation is evaluated as@n square-rooted flows;

- Flow statistics are regionalized using two simpletmods: a regression between
statistics and catchment descriptors, fitted on alhilable catchments, and a
regression whose residuals are interpolated witlerge distance weighting (IDW),

i.e. the approaches developed in chapters 5 anel isad.

* Flow statistics considered
For all of the available catchments, we calculdtesl following flow statistics, on records
concerning years between 1986 and 2005:
- Average yearly runoff;
- Percentiles of the flow duration curve:
we considered eleven quantiles of the FDC, and nefltr to these values according to the

percentage of exceedand®,(, for instance, is the value that is exceeded 10%etime).
With this nomenclature, we have,Q,,,Q,,,... Qg Qqs;

- Lag:

The lag time of the catchment, estimated as the tmft for which rainfall and runoff
records show the highest correlation. For instaiidbe runoff record appears to be mostly

correlated with the rainfall of two days before, widl have a two days lag.

=  Parameter sets: initial choice and evaluation
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In this chapter, we initially considered a brodordry of possible parameter sets for each
catchment treated as ungauged. This library conthi@ parameter sets that where calibrated

on all the remaining stations in the dataset.

Each parameter set has been evaluated accordihg following scheme:

- A simulation is run with the parameter set undeal@ation and the rainfall record of
the ungauged catchment considered;
- The flow statistics mentioned above are calculatethe obtained simulation: we will

refer to them a§~;

- S are confronted with the regionalized estimat®nfor each statistic, the following
error measure is calculated

§-5

g

err, =
Eq. 11

where o,is the standard deviation of the observed valubs (s equivalent to

working on normalized variables).

- A penalty score is calculated, as sum of all stror

p:Zerri

Eqg. 12

- The available parameter sets are ranked accorditigeir penalty score

At this point, one can pick the best n parametés, san a simulation for each of them with
the ungauged's rainfall record, and average suunhlaiions into a single time series. The
number n is specific to the dataset and to theoregization method uses: for this reason, we

will determine its optimal value following a jackiite procedure

A calibrated penalty score, where the penalty seaneld be a weighted average of the errors
on each statistic, was also tested. The weight®e Haeen determined by a jack-knife
calibration. Although this technique did slightimprove the regionalization performance, the
increase is modest and apparently specific to tieber of parameter sets one wants to use
(e.g. weights calibrated to select one parametetsaot offer an advantage when one wants

to select ten parameter sets). As we want to foouthe generalities of the indirect method,
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and patrticularly on the influence of the first-stggionalization on its outcome, we will not

cover the calibration of a weighted penalty scargreater detail.

10.4.2 Criterion used to further constrain the choice oapameter sets

As outlined in section 10.3.2, after evaluating #imlity of regionalized flow statistics to
identify efficient parameter sets out of a broadgea of possible values, we will test it on a
narrower "library" of possible values, built usiag additional constraint, based on spatial
proximity.

This choice has been based on the fact that thgiganetwork we work with is particularly
spatially-dense, and reflects a scheme already msether parts of this work: using spatial
proximity as a "last resource" to improve the perfances of a regionalization method.

10.4.3 Three benchmark comparisons.
In order to help evaluating our results, we provide comparison with two benchmark

approaches:

- random selection: ten parameter sets are randoeibcted from the library of
candidate parameter sets. The resulting flow tiertees are averaged. This
benchmark indicates the lower limit of acceptabdefgrmance: any regionalization
method should perform better than this (hopefullychmbetter).

- "spatial proximity": we considered the optimal sefsthe first three neighbors, and
averaged the time series. This method is quite pimstcated, lacks robustness, but
performs very well when the distance between tlgauged catchment of interest and
the next gauged basins is short enough, as in ase.cWe would like other
regionalization methods to have similar (or betgggyformances on a full-density
network and to show better robustness when thatgiesseduced.

- "ideal case": we will use the calibrated model'dgrenance. For a large dataset such
as the one we are working with, it is practicalyualent to a method that could
choose the best possible parameter set among ttaldwated on the gauged

catchments. On a smaller dataset, there wouldrbera noticeable difference.

10.5 Discussion of results
In this section, we will have a look at how the gwsed indirect regionalization method

performed. The results will be presented in thofaihg order: we will address successively

the number of donors to be retained, the impacthef initial regression's accuracy, the
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options for further constraining the choice of fr@rameter sets, and the dependency of the

results on donor stations density.

10.5.1 Number of parameter sets to be retained

Figure 26 shows how the performance of the propasdidect regionalization varies when
selecting different numbers of donors. Three caseshown, corresponding to two different
first-step regionalizations of the flow statistieg)d a "cheat" case where we supposed that
one could regionalize flow statistics with no estor

The most remarkable behavior showed by the thresescas the lack of a significant
performance decrease when selecting many dontlsugh in the "cheat" case we do have a
slight decrease if more than 30 donors are sele@taeid result is rather surprising, because
we would expect that only those parameter sets twhitow reproducing best the flow
statistics should contribute to a good simulati@hile after a while, the contribution of the
most different parameter sets should degrade théorpeance of the regionalization
approach.

During the rest of our discussion, we will showules obtained with 50 donors, for all

methods (this is an arbitrary choice).

Optimal number of donors
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Figure 26: Optimal number of donors for an indirect regionalization scheme. Black line:
statistics regionalized with a regression and an I interpolation of the residuals. Grey dashed
line: statistics regionalized using a regression. 18y dotted line: "true" statistics (cheat)
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10.5.2 Impact of statistics' regionalization quality on éfollowing regionalization of RR
model parameter sets

In order to assess the impact of the initial regi@mation's accuracy on the overall results, we
followed the indirect regionalization procedure atésed in section 10.4 with two kinds of
flow statistics' regionalizations: a nation-widgmession and a regression coupled with IDW

interpolation of the residuals.

Figure 27 shows the results obtained with flowistias estimated with a plain regression
approach (i.e. excluding regionalization of residudn this case, the indirect regionalization
cannot reach the efficiency of the spatial proxyrbenchmark comparison. The obtained
median efficiency is 0.51 if expressed in C2M, &gient to a NSE of 0.68

This result is quite disappointing since it seeimat the regionalization approach does not
benefit from the information on flow statistics.

To assess whether this result is due to a lackedfigtive efficiency of the approach used to
regionalize flow statistics, we also tested the enoefined approach, i.e. using IDW

interpolation of the residuals.

The results are presented in Figure 28: althoughetis a visible improvement, the spatial
proximity benchmark approach still performs betfdre two methods have roughly the same
performance for the better-modeled catchments,thmitspatial proximity approach is still
superior for the worse modeled ones.

The median efficiency obtained in this case is G&pressed as C2M, corresponding to a
NSE of 0.71
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Figure 27: Performance of the proposed "plain regresion approach”. The black line presents
the results obtained with flow statistics obtainedthrough a "plain regression approach”,
confronted with three benchmark comparisons: randomdonor (dotted grey), spatial proximity

(dashed grey) and calibrated model (solid grey)
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Figure 28: Performance of the proposed "regressior residuals interpolation”. The black line
presents the results obtained with flow statisticsobtained through a regression approach
combined with an IDW-based interpolation of residuds. It is confronted with three benchmark
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comparisons: random donor (dotted grey), spatial poximity (dashed grey) and calibrated
model (solid grey)

At this stage, the reasons of the failure of tlteract regionalization approaches are not clear
since it may be attributable to either the fact tha “hydrological similarity” based on flow
statistics does not match the “parametric simyarior the fact that the performance of the
regionalization technique for flow statistics i® tow, which does not allow to identify truly

“hydrologically” similar catchments.

With the experiment presented in Figure 29, our &no estimate the maximum possible
margin of improvement, if only we could estimaterfpetly the flow statistics at the
ungauged location. Of course, this is impossililes is why we consider this method as a
"cheat". The purpose of such a comparison is tavshtbat margin of improvement can be
filled just by improving the first-step regionaltzan of flow statistics over the two

techniques we used.

Obviously, it is clear that one could eventually dach better than pure spatial proximity,
getting very close to the efficiency of the caltedhimodel (median C2M=0.66, NSE=0.80).

These results show that the level of predictabibfyflow statistics, though apparently
satisfying, is too low to help the regionalizatipnocedures. Consequently, the indirect

regionalization approach might be improved if regilization of flow statistics is.

However, one can also wonder at this stage if fifiete should rather be put on direct
regionalization approaches: note that the perfoo@anof an indirect approach with
“perfectly regionalized” statistics are still fastom those of a calibration performed directly
against the performance criterion, and also froosehof a “cheating” approach that chooses
(a posteriori) the most efficient parameter set mgnohose calibrated for the database
catchments, excluding the one that was calibravedHe one considered as receiver (see
Figure 30). This last result confirms that simiiarbased on the reproduction of flow
statistics and similarity based on model parametirsnot match very well, as both
hypothetical methods use information from the ne=es flow record and choose among the

same parameter sets.
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Figure 29: Performance of an ideal case where tHtow statistics could be regionalized with no

errors (black dashed line). It is confronted with tree benchmark comparisons: random donor
(dotted grey), spatial proximity (dashed grey) anctalibrated model (solid grey)

Incidentally, one can also consider the reproductad statistic flow signatures as an
alternative calibration criterion, as done by Wdsteg et al. (2010): in this case, further
analysis would be needed to assess for which atiglics it produces desirable simulations,

and for which others it does not.
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Figure 30: Performance of an ideal case where tHtow statistics could be regionalized with no
errors (black solid line). It is confronted with two benchmark comparisons: calibrated model
(grey solid line) and a “cheating” method that selets a-posteriori the best possible donor among
the catchments available in the database (grey dasth line).

10.5.3 Could it be advantageous to constrain the choicepafameter sets with an
additional criterion?

One of the issues that this section aims to addees¢hether an indirect regionalization
approach can give an acceptable performance wheghalene, i.e. when making a selection
out of a broad range of possible parameter setshether it is necessary to combine it with
other ways of constraining their choice. For thispmse, as explained in paragraph 10.4.2,
we employed a constraint based on spatial proximngy initially select a pool of n closest
neighbours as donors, we evaluate them with theritbesl indirect regionalization procedure,
and finally consider only half of them (as an admw choice). In the end, the best result

seems to be obtained when considering the best@&slout of the closest 10.

Figure 5 shows the results obtained in this casally, the selection based on flow statistics
offers a slight but quite consistent improvementerothe closest neighbor (median
C2M=0.59, NSE=0.74). It is interesting to noticeattithe improvement seems to be
concentrated on "better-modeled" catchments. Nwie gimilar results were observed when

selecting 10 donors out of the 20 most physiogiaglyi similar catchments.
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Figure 31 Performance of the proposed approach wheselecting 5 parameter sets out of the the
first 10 neighboring catchments (solid black line).lt is confronted with three benchmark

comparisons: random donor (dotted grey), spatial poximity (dashed grey) and calibrated
model (solid grey)

10.5.4 Robustness of the method: application of the mebgical desert test
As explained in paragraph 10.3.3, one of our ohjestis addressing the performance of the

presented indirect regionalization method in dai@se situations. We will address this point

using the "metrological desert" test presentectatisn 3.3 and in chapter 9

Figure 32 shows, with a black dashed line, the aredifficiency obtained by an indirect
regionalization using 50 neighbours and streamflstatistics estimated with a simple
regression (for which we assume that the performatecrease in a "metrological desert"
situation could be negligible). This is the samsecalready presented in Figure 27 and has
been chosen for the metrological desert test Sm@esparse-network situation we consider
the IDW interpolation of the residuals to be urable.

As a comparison, the chart also shows the resfiltheobackwards-sorting physiographic
similarity approach discussed in section 7.3: thethod has been chosen as an example of
good robustness.

Indirect regionalization (or, at least, the selmttiof parameter sets) shows a remarkable

robustness: the obtained performance is only depdrmh the performance of the first-step
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estimation of streamflow, and on spatially-sparsevorks it is likely to perform as well as
similarity-based methods or even better.
Of course, in cases where some stations could geaweful data for flow statistic estimation

but not for model calibration, we could expect ebetter performances.

Hydrological desert
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Figure 32: "Metrological desert" test. The median dficiency of an indirect regionalization
method using regression-estimated flow statisticdbkack line) is confronted with the optimal
physiographic-similarity method identified in Part 3 (grey line).
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11 How the choice of an efficiency criterion impacts o ur
vision of the 'best' regionalization method

In this chapter, we will test the regionalizatiorthnds seen in the previous chapters from
the point of view of different efficiency criteriey order to investigate whether their order of
preference should be considered as specific tachiosen criterion. Specific “sub-criteria”

will be used to better address the relative stiengind weaknesses of the two families of

regionalization methods (traditional and indirect).
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11.1 What is the best regionalization method when we agd an FDC-based

performance criterion?

In chapter 10 we have seen that indirect regioattin based on the reproduction
regionalized FDC quantiles has worse performanas traditional methods based on site-
similarity, at least when the performance criteradrchoice is C2M (bounded NSE).

It is not clear whether the poor performance ofhsutethods is mostly due to a poor
regionalization of the FDC quantiles, or to thetféltat the constraint imposed by the
reproduction of the FDC is quite different from tbee imposed by RMSE-based criteria.
The purpose of this chapter is to clarify this pdig means of a change in the performance
criterion: an FDC-based constraint will be usecevaluate the regionalized models, instead
of C2M. For each catchment in our database, a namnpeter set will be calibrated,
according to such constraint. These parametevgitdhen be regionalized according to the

same procedures outlined in chapters 7 and 8.

11.1.1 Performance criterion used for calibration

The first step of our evaluation is the calibratadmew parameter sets under an FDC-based
constraint.

The performance criterion used is almost identicdahe “penalty score” presented in section
10.4.2, ie a sum of normalized errors on empifiaC quantiles. The only difference one is
that the “lag” statistic (time shift that maximiztése correlation between rainfall and runoff
records) is not used in this case, as its disanatere (its empirical values can only be
integer: 0, 1, 2, etc.) leads to discontinuitiestie optimization surfaces, which make

calibration procedures either very time-consuminmefficient.

11.1.2 Regionalization results

Figure 33 shows the results of direct and indiregfionalization methods when evaluated

with an FDC-based criterion. For ease of readinghaee chosen to only show two direct

methods, as the performances of the remaining ter@ wery similar. We have also included

two benchmarks: the calibration performance (sglidy line) and the performance of a

“worst case” regionalization using 10 randomly droparameter sets. Readers will note that
the best performances correspond to the lowesesaitithe chosen criterion.

The performances of the best direct and the beésteict methods are comparable, with only
slight differences at the two extremes of the thatron (an indirect method based on FDC
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guantiles regionalized with regression+IDW tendbedoetter than direct methods on worse-
modeled catchments, while the opposite is trudéter-modelled ones). An indirect method
based on FDC quantiles regionalized using natiafewiegressions only has the worse
performances in the group. This behaviour suggésas the indirect regionalization’s

inadequacy outlined in section 10.5 is mostly duthe difference between RMSE-based and

FDC-based constraints.
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Figure 33: Performance distribution of regionalizaion results according to an FDC-based
criterion. Continuous grey line: calibration performance. Dashed grey line: random
regionalization.
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11.2 Use of the Gupta et al. decomposition of NSE as djaostic tool : where do lie the

differences between C2M and the FDC-based criterionsed in this chapter?

Gupta et al. (2009) proposed a decomposition of NIsE criterion based measures of
correlation coefficient, normalized bias and refatvariability (alpha) between the observed
and the simulated runoff. This decomposition causeful to understand in which ways the
constraints imposed by C2M and by the proposed BBs&d criteria differ, and
consequently to explain why the indirect regioratian method discussed in chapter 10 had
disappointing results. We will first look at cal#tted parameter sets in order to only focus on

the two criteria, and then move our attention giagralized ones.

11.2.1 Detail of the NSE decomposition used

Below we will briefly detail the three sub-compotenf the NSE used as diagnostic criteria:

— Correlation coefficient

0 = E[(O, - u, XS - 1)) Eq. 13

- Bias

,an(ﬂs_,uo)/ao Eq. 14

— Relative variability (alpha)

a = o . / g o Eq. 15
Wheres stands for simulatea, for observed.

11.2.2 Difference in calibrated parameter sets

Figure 34 compares the correlation coefficientsiltewy from parameter sets that have been
calibrated with either C2M on square-rooted flows,an FDC-based constraint. While in

both cases most of the simulations have a corosladf at least 0.9, there is a significant
difference between the two calibration criteriathathe FDC-based constraint yielding lower
correlations.

Figure 35 shows the distribution of bias for the teviteria. The results obtained with C2M

are good, as most of the simulations show veng liitas, and overall, a very slight tendancy
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for overestimation. The “indirect” constraint showsvorse behaviour, even if th average of
observed biases is closer to 0.

Figure 36 shows the relative variability observedhe two cases. While we think that both

criteria are unsatisfying in this regard, the FD&3dd constraint produces again the worst
results of the two, with a more pronounced tenddacyver-variability.

Overall we can say that when evaluated with thep@sed sub-criteria, an FDC-based

constraint seems to have worse performances thav, @2 particular regarding the

correlation and bias of the simulations vs the plag®ns.
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Figure 34: distribution of correlations for C2M-calibrated and FDC-calibrated parameters
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11.2.3 Difference in regionalized parameter sets

After discussing the difference between the caldatgparameter sets (that the regionalized
ones try to mimic), it is time to evaluate the difnces between parameter sets regionalized
with traditional site-similarity methods and witmtlirect” ones.

Figure 37, Figure 38 and Figure 39 show an intergs$tend: while indirect methods perform
worse than the similarity based ones, the diffeeaasmaller than when considering the two
calibration criteria that these regionalization r@ghes try to mimic. This is particularly true
for bias, where the two regionalization approaatees be considered to be almost equivalent

(they are equally far from a neutral bias, eveniiect methods tend to overestimate and
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indirect ones to underestimate) and for relativeadity, where we can only observe a small
difference.

The largest weakness of “indirect” approaches mgarison to direct ones is shared with the
FDC-based constraint they try to mimic: poor catien between simulated and observed
runoff. This can be the consequence of lack ofissted that efficiently summarize a
catchment’s dynamical response, and/or of thetfattcalibrating against a small number of
statistical properties is, in a way, reminiscentalibrating against a small number of flow

records, and results in a loss of information imparison to criteria that use all the points of

a time series.
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Figure 37: distribution of correlations for direct and indirect regionalization methods
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12 Conclusion

Since the kickoff of the PUB decade in 2003 (Sivapeaet al., 2003), there has been an
increasing interest in regionalization issues.
Despite a number of case studies and some compasitidies, it is still difficult to assess
the relative merits of the several regionalizategproaches developed so far. The objective
of this thesis was to give an outlook of thosetretamerits on the French territory.
To this aim, we developed a 3-step analysis:
= The first step (Part 2) was to develop an efficiapproach to regionalize flow
statistics.
= The second step (Part 3) was to assess the perfoemaf the classical "direct”
regionalization procedure.
= The third step (Part 4) was to use the insightaurgtd from the 2 first steps and
propose a novel framework for regionalizing modelse so-called "indirect”
regionalization procedure, which has not been coetpavith direct approaches in

previous studies.

To reach more general conclusions, we developedethadology to assess both the
performance of the tested regionalization approacred their robustness in a context of
sparse hydrometric network. Indeed, the Frenchtdeyr has a quite dense hydrometric
network compared to other countries and the rolegstriest developed here may partly
explain the disparate results found in the litexaton the relative merits of regionalization

approaches.

The second part of the thesis brought some intagestsights on our ability to predict flow
statistics. Our approach was two-fold. First, walwio explain flow statistics with the only
knowledge of catchment characteristics, since dpjgroach might be both more robust and
more conceptually satisfying compared to approatiased solely on interpolation. Second,
we wished to explain the residuals of the regresbmsed approach using information on
their spatial organization. This allowed betterfpenance, at the expense of a lack of

robustness if considering a poorly gauged network.

The third part of the thesis aimed at testing saveptions for the "direct" regionalization

approach on the basis of the GR4J model simulations
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= The most important step for the construction ofuacsssful physical similarity metric
appeared to be the selection of the most "hydro#dlyi relevant” catchment descriptors,
among the many available ones. A metric based ocipal Component Analysis, with
rather loose criteria for the selection of relevdescriptors, was compared with one
based on a strictly performance-oriented seleatiorelevant descriptors, at the expense
of loose assumptions in the variable treatment |émgtory variables were treated as
uncorrelated, even if this was not the case): atier approach gave the best results. In
this regard, it is important to emphasize that mibstot all, of the available catchment
descriptors couléh priori be considered to be hydrologically relevant froreusjective
point of view: a good variable selection processusth not be driven by a descriptor's
relevance when considered alone, but rather bglgsin a compound metric.

= Both of the tested similarity methods performedtsly better than the spatial-proximity
alternative, with median C2M efficiency criteria @56 and 0.57 for the two similarity-
based methods and 0.54 for proximity. This resuitislight contradiction with previous
large-scale regionalization studies (see e.g. Oatlal., 2008; Parajka et al., 2005). This
could be due to the refined approach proposed hmmeed at selecting the most
hydrologically relevant catchment descriptors. Thuse could consider that there still
exists a room for progress in regionalization apphes if some other relevant catchment
descriptors are proposed (particularly in regarduo-surface characteristics) and/or new
similarity metrics are tested.

= Last, two simple methods of combining similarity tnes and spatial proximity were
tested, with a marginal performance increase olgsipal similarity alone, and, in one
case, a significant decrease in robustness, dedipgterelatively high potential for
improvement showed by anposteriori combination of the two approaches.

Considering perspectives of further work on siniti§jaand proximity approaches, we suggest

that:

= This thesis work may have suffered from the retatiack of data concerning pedology
(the nature of soil). The lack is “relative” in tilsense that although this information is
available in form of soil classifications, it shdube first rearranged to obtain a limited
number numerical soil descriptors that refer tohtip@rological behavior of soils.

= The similarity approaches might benefit from a viigg of the donors (giving more
importance to the donors who are classified as siostar to the ungauged)

= The complementary use of the similarity and progymcriteria could be further
investigated, with the objective of predictigpriori if a certain ungauged catchment
should be treated with either of the two approaches
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In the fourth part of this thesis work we focused the performances of "indirect"
regionalization methods, which are based on a pusviegionalization of flow statistics. This
investigation was particularly exploratory. Indeadhereas this kind of approaches has been
advocated by several authors in recent years (geBardossy, 2007; Castiglioni et al., 2010;
Westerberg et al., 2010; Yadav et al., 2007), they been tested as operational approaches
by only a few authors, and to our knowledge theirfgrmance had not been compared to
"direct” regionalization schemes.
Our results suggest that the performance of thggeoaches strongly depends on the
accuracy on the statistics' estimation, and thay peecise estimates would be required to
outperform the "direct” approaches.
In this regard it is important to note that everthwa "perfect” estimation of flow statistics,
one would get results that are still relatively fiamm those of the calibrated model. We have
shown that this is largely due to the fact thatragihe model to reproduce certain statistical
properties of the observed time series is a diffie@nstraint than the one imposed by
RMSE-based performance criteria used to calibreéRR model, such as C2M (or NSE).
We believe that future work on the subject of irdirregionalization schemes should at first
focus on this issue, trying to address two question
= |f we calibrated a rainfall-runoff model so thaethimulated record matches some of the
statistical properties of the observed one, woutdget useful simulation? In other words,
can calibration (and consequently regionalizatiggainst flow statistics be regarded as a
useful performance criterion for some applications?
= Can we tweak the target flow statistics and the weey calculate the error in their
reproduction so that the resulting simulations @dose to optimal if evaluated with our
traditional criteria?
On the positive side, indirect methods seem to fiteniethe robustness of regression-based
regionalization of flow statistics, and thus thegmvé interesting performances (when
compared to direct approaches) in the case ofalyasparse gauging networks.
Finally, although their performances when usedalkgem to be less satisfying than those of
more traditional approaches, indirect regional@atnethods seem to integrate very well in a
multi-criterion approach, as showed by the exangblan "hybrid" approach using spatial
proximity as well: the development of multi-crit@rregionalization could be a subject of

further work on its own.
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Overall, among the relatively simple regionalizatimethods tested, site-similarity based on
an accurate selection of physiographic and climesiichment descriptors seems to be the
most reasonable choice, especially if one consithatsour selection of catchment descriptors
did not include soil or geological properties, ahat this method performed better than
spatial proximity despite the high density of oauging network.

However, our results also underline that althoughilarity metrics show a desirable
"informative" content, one should be aware of thapproximate nature and of their
robustness limits: regionalization based on sheiarity still requires a relatively dense
gauging network to perform at its best. Pure spagii@ximity can be considered an
acceptable surrogate if the gauging network islipadense and if only few catchment
descriptors are available.

Indirect methods, finally, need further investigati but if evaluated in terms of a traditional
RMSE-based performance criterion, they are onlgredting in semi-ungauged situations, or

in the case of very sparse gauging stations.

The thesis does not give definitive answers onoragization approaches combining
different criteria, although a combination of dirand indirect approaches has been shown to
give promising results. We believe that this pamtparticular merits a more systematic

attention in future works on the subject of modgjionalization.
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Part 6 — Appendices

14 Sensitivity to the elimination of similar donors: gaphic results

In the following pages we show the results of thieation of donors which are similar to

the receiver catchment, according to each descriptour list. The graphics follow the same
conventions of those in chapter 9: the upper dadihedrepresents the 0.9 quantile of the
performance distribution, the continuous line shdlas median, and the lower dashed line

the 0.1 quantile.
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15 GR4J

Figure 40 shows the structure of tt
GR4J model. GR4J is a twa
storage, four-parameter, daily-ste
conceptual RR model that he
proven to give good results on
wide range of French catchments.
The four parameters have tr
following functions:

-X1: depth of the routing store
-X2: depth of the production store
-X3: leaks and gains (sub-surfac
exchanges with neighboring
catchments and/or deep aquifi
systems)

-X4: unitary hydrograph UH1 bas:
time

For more details on GR4J, se¢
Perrin et al. (2003).

i I interce ption
En Fn

VAN

Es Ps Pn-Ps

Réservoir de
mI .

production
Perc k
09
HU2
X4

1

A

0
Hml{
E— 3

2.X4

| |
Réservolr & gl
de routage mH IR ';'fm) f/?wa)

/
& od
L ]

©

Figure 40: Scheme of the fouparameter GR4J
model

-193 -



- 194 -



Index

F o L0V =0 [0 =T o 1= o | £ 3
LSS U 1 T PRSPPI 4
Y 011 > Vo 5
N [ 11 70 o {1 o 1T o PSSP 7
Part 1 — Methods, databases and lIitErature ... ..ccooeeeeeieeeeeeeeeeeee e 11
2 Databases used in thiS theSiS ..........coiiicemme e e 13
2.1  Why should we use a large set of catchments?.............cccceeeiiiiiiinneeeeeeeen, 14
2.2 How our dataset Was MAUE .........coevuemeeee e e era e eaas 14

2.3 How can we characterize a catchment? . e v eeeeeeeeeeeceeeeeeeeeeeeeeiieeeeenn 15

24 Distribution of a few key descriptors and flolaracteristics over our dataset .....19

3 MethodologiCal ASPECLS .........cevviiieiiieeree it e e e e e e e e s 23
3.1  General principles of the comparative testihgltrnative regionalization methods

24

3.1.1 Jack-knife approach to cross validation...............oeeuvvveeiiiiiiieneeeeeeeeeenn. 24

3.1.2 There is no absolute truth in this world:veed benchmarks........................ 24

3.1.3 Specificities of different models: how thgiomalization exercise differs for a

statistical and for a rainfall-runoff model ... 25
3.2 Catchment selection: differential approachtherdonor and the receiver pool..... 26
3.3 Further methodological requirements to asdesgdbustness of a regionalization
method27

3.3.1 Why this question Makes SENSE? ... eeeeeeeeeeeiieeeeeiieiiiiiiiinneeeeeeee 20

3.3.2 Assessing the impact of the density of nesgbib metrological desert

generation vs random NetWOork reduCtioN.......ccuueiveveeeeiiiieiiiiiiiee e ee e eeeeeeeeeee 28
3.4  Synthesis of the methodological ChOICES mmeevvvrrriiiiiiiiiiiee e, 32
4  Literature review on the regionalization of rainfall-runoff models ...............cccc....... 33
4.1  All agree more or less on a definition for amgaged basin ...................cccvvvvvinnns 34

4.2 For a hydrological fundamentalist, there is smecial problem with ungaged
DASINS ... e et 34
4.3  With ungauged basins, the solution lies in tipgtmore physically measurable”
parameters in the model in order to reduce (supBjdbe dependency on calibration .....35
4.4  With ungauged basins, the solution lies in ifigda posteriori a relationship
between calibrated parameters and relevant phypbgr and climatic descriptors (or
geographiCal COOTAINALES) .......uuuuiiiis e e e e e e e e e e e e e e e e eeeeeeeeee 36
44.1 Absolute relatioNShiPS.......coooi e 36



4.4.2 Relative relationShips...........evviieeeeeeieeesr e 37

4.5  With ungauged basins, the solution lies inifigcbne or more similar catchment(s)

(in order to transfer parameters from them).............iiiiiii s 38
45.1 Methods focusing on spatial ProxXimity..........ccccceeeeevvieeveeiiiiiiicieeee e 38
45.2 Methods focusing on physical sSimilarity.............ccccovvviviiiiiiccccieeee e 39
4.5.3 How to define Similarity?..........oooiiiiiiiiiiiiie e 41

45.4 Concerning possible complementarities betwepatial proximity and

01}V A o= 1 IR 11 =T 1 2 42
4.6  With ungauged basins, the solution lies in gisin previously made statistical
regionalization to guide us in the choice of mgulameters..............ccoieei v 43

4.7 My opinion (before | started this work), howenolved, and how the solutions |

tried to implement relate to the literature.............coooeeiiiiieeee e 45
Part 2 — Studies relative to flow statistics and thir regionalization ..............ccceeeeeeeenee a7
5 Linking flow statistics to physiographic deSCriptors .........ccccevviiieieeeeieeeeeeeeieiiiiiiim 49
5.1 Brief review of the literature on the regiomation of flow statistics .................... 50

5.2 Regression as a conceptual model of the raktip between physiographic

properties, climate and StreamflOW ......... . eeeeeeiiiiiiii e 52
5.2.1 Nation-wide vs local formulations......eeee e 52
5.2.2 Selecting relevant deSCrPLOrS .........cuuuuviiiiiiiiiie e e e e s 53

5.3  Streamflow statistics considered and results............cccoeevveeiiiiieiiiiiiiiieiieeeeee. 54
5.3.1 Streamflow statistics considered...........ccoooeviiiiiiiiiiiii e, 54
5.3.2 List of physiographic deSCriptors...........uueeceiiiiiei e 54
533 RESUILS ... e e e e e e e e e e e et e e e e e e e as 55
534 Review of the dependence of the selectedtstaton each descriptor .......... 59

6 Using neighbour catchments residuals to improve thefficiency of flow statistics
[g=To o] g F=1 2= 11 0] o [P SSRRRPRRP 63

6.1 Residual's spatial structure as a descriptorowdrlooked or not observable

L0 01T 11 SR 64
6.1.1 1Y AT (=T o To] F= 11 o] o USSP 64
6.1.2 RESUIS ... 65

6.2 Constraints on the surface of donor catchmentS...........cccoeeeeeiiiiiiiiiiiiiiiiies 67

6.3  Accounting for nested donor catChMeNts o oeeevevveeveeviiiiiiiiiiiieieeeeeeeennnn. 10

6.4  Excluding outliers from the donors’ liSt e ..coceeeeiiiiiieecc e, 73

6.5 Final considerations on the results obtainedhe regionalization of flow statistics
87

- 196 -



Part 3 — Regionalization of rainfall-runoff models— direct methods................oovnenn..n. 98

7  Physiographic similarity regionalization .........c......coovvvviviiiiiiiiiiiiie e eeeeeeeeeeeeeee 91
7.1 INEFOAUCTION ...t e e e e e e e 92
7.1.1 Common points of the tested regionalizati@hods...............ccooeeeieiie. 92
7.2 Method based on Principal Component ANalYSiS.-........uuuviiiiiiniiieeeiinnieeeee. 93.
7.2.1 Preliminary selection of explanatory variable.............cccccceeeiiiiiiieneenn. 94.

7.2.2 Principal Component Analysis as a tool toroome the issue of correlated

(0TS ] 1 (0 £ TSRS 95
7.2.3 RESUIS ... 96
7.3 Backwards sorting method..............icceeeeeeeeie e 99
7.3.1 Variable selection algorithm ..., 99
7.3.2 RESUIS ..t 100
8 Joining spatial proximity and physiographic similarity.............cccceoeiiiiiiiviiiiinennn. 103
8.1 INEFOAUCTION ...t e e e e e e e 104
8.2  Anintersection-based Method......... .o 105
8.2.1 [0 12 o 1] o 1o o USRS RPRPRRRPR 105
8.2.2 RESUILS ...t e e e e e e e e a e e 106
8.3  Aunion-based Method .............oouiii oo 107
8.3.1 DT ol 1] 1 0] o 107
8.3.2 RESUIS ...t 108
8.4  Comparison of the tested regionalization apfiTtes...........ccccceeevveeeeeeeeieeeeeeennnns 011

9 Sensitivity analysis of regionalization methods: he do they react to the lack of

SIMIIAr CAICNMENTS? ...ttt e e e e e e e e e e e e e 113
9.1 INEFOAUCTION ...t e e e e e b e 114
9.1.1 Results of the elimination neighboring donors.............cccvviiiiiii 114
9.2 Sensitivity of regionalization methods to thel of similar catchments ............. 116
9.2.1 RESUILS ... e e e e e e e e e e e 116
9.3  Sensitivity of regionalization methods to tinasls of model efficiency............. 117
9.3.1 RESUIS ..t 117
Part 4 — Regionalization of rainfall-runoff models— the indirect path........................... 121
10 Direct and indirect regionalization..............cccoooiiiiiiiiiiiiii e 123
(0 0 A [ 01 o To (8 T 1o o PP PPPPPUPPRPRRTN 124
10.1.1  Why could an indirect regionalization be@®ageous?.............cccceeeeeeeennn. 124
10.2 Review of the relevant scientific literature............cccceeveiiiiiiicciiiiiiiiiieeeeen, 125

10.2.1 How does the work presented in this chapgtiete to the existing literature?
125

-197 -



10.3 Issues of concern for implementing an indiregtonalization scheme................ 125
10.3.1 How does the first level of regionalizataffect the second? ...................... 125
10.3.2 How to constrain the initial choice of pbésiparameter sets? .................... 126
10.3.3  Can such a method be robUSLE? ......cceeiiiiiiiiii e 126

0 IR |V = g T Yo PP PPPRRT 127
10.4.1  General ChOICES .....ccooii i 127
10.4.2  Criterion used to further constrain the chaf parameter sets ................... 129
10.4.3  Three benchmark COmMpariSONS. .........cceuuviviiiiiiiiiieiiee e eeeeeeeeeeeeeeaeieees 129

10.5 DIiSCUSSION Of FESUILS ....cevviiiiiiiii e 129
10.5.1  Number of parameter sets to be retain@d.............ccccoeeeieiiiiiiinennn, 130

10.5.2 Impact of statistics' regionalization quabn the following regionalization of
RR Model parameter SEIS ............cevvews e e eeeeaeasnnnasseassaeeeeeeaeeeeessrenennseesssnnnnn 131
10.5.3 Could it be advantageous to constrain tlecehof parameter sets with an
= Yo (o1 ol F= U ol 11 =11 0] o o PRPPPUTPPPRRPR 135

10.5.4 Robustness of the method: application ofrie&ological desert test.......... 136
11 How the choice of an efficiency criterion impacts ar vision of the 'best

[g=To o] g F=1 V4= U1 To] o 1 1 41=11 [0 Lo B 139
11.1 What is the best regionalization method wheradopt an FDC-based performance

(o] 1] (=11 0] 0 1 PP PPPPPPPPPPPPPPPP 140
11.1.1  Performance criterion used for calibratiQn...............cccccoeeiiiiiiiiiiiiinns 140
11.1.2 Regionalization reSUILS............uucemmmmiiii e 140

11.2 Use of the Gupta et al. decomposition of NSEiagnostic tool : where do lie the

differences between C2M and the FDC-based critargad in this chapter?.................. 142
11.2.1 Detail of the NSE decomposSition USEd -....cccvvvvvviiiiiiiieiieieiieiieeeeeiiiians 142
11.2.2 Difference in calibrated parameter SetS. c......ccccceeiiiiiriiiiiiiiiiiieiiiiiiies 142
11.2.3 Difference in regionalized parameter SetS..........ccccvvvvvrvrvervnrciinienennn 145

12 CONCIUSION ... ettt s e e e e e e e e e e e e e e aeeeeaeaaeeeeeeeennnnnnnns 149
13 RETEIEINCES ...ttt ettt et et e e e e e e e e e e e s sttt et e e e e e e e e e e e e e s 153
Part 6 — APPENUICES ... ..cooiiiiiiiieiie ittt eeeem e e e e e e et e bbb s e e e e e e e e e e eeees 157
14 Sensitivity to the elimination of similar donors: gaphic resultS................cccceee. 157
S 1 T USSP 193
0 T0 (= TP TP 195
IS 0 T U] PO PPPPPRN 200
LISt OF TADIES ..cceiiiieeeeeee et e e e e e bbb r e e e e eaae s 204

- 198 -



- 199 -



List of Figures

Figure 1: Distribution densities of six physiographlistributors, compared with normal
distributions (dashed lines). Note the semi-loglescdor Area and Drainage Density
(lognormal distributions were employed in these BEBES) ...........ccceevvvvvveeeviivnnnnns 20..

Figure 2: Distributions of five flow characterisgic..............uuuuuiiiiiiin e 21

Figure 3: Distribution of the distance of the cktseeighbouring catchments over our dataset
(distance calculated between catchments' centroids)............cccevvvvvveviiiiiiiiiinnns 27

Figure 4: The catchments of our dataset are predeRed-circled catchments do not have a
neighboring basin closer than 20 KM ...........iiiiiiiii e 29

Figure 5: Random density reduction (left) VS metgatal desert generation (right). Blue
represents the ungauged catchment, beige the aattiodonor catchments, red the
discarded donor catchments. In both examples, 86rddhave been discarded. ........... 30

Figure 6: Impact of a progressive reduction of thenber of donor catchments on the
efficiency of a regionalization exercise (here sbhdwthe median efficiency of a
regionalized RR model). a- random reduction ofdbkasity of donors, b- creation of a
paLeT i) (oToTo= 1o [T Y= o R PURT 31

Figure 8: Scatterplots of empirical and regressialculated values for flow statistics;tQ

D50+ ettt e ettt ettt ettt ee et et e et et et e et et et e e et et et et et e et e et et et et e e e e e 57
Figure 9: Scatterplots of empirical and regressialculated values for flow statisticsdQo

Q05+ttt et e ettt e e e ettt e e e e e ———eee R et e eeee e e e Rttt et e e e e e an bttt et e e e ennnae e e e aannnereeeeeennnrrees 58
Figure 10: Scatterplots of empirical and regressiaculated values for flow statistics, &

SO PPPRRRPPPPPRPPN 59

Figure 11: Map of the "hybrid" land cover classpessed as fraction of the catchment’s
surface occupied by it. Most of the catchments Hrat rich with this land cover are
climatically influenced by the Atlantic 0CeaN.............oevvviiiiiiiiiiiie e 62

Figure 12: Scatterplots of empirical and estimédted statistics, with a regression model
(left column) or with regression and IDW interpdat of the residuals (right column) 66

Figure 13: Simple IDW scatterplots (left) confrashtgith size-constraint method (right). Low

to hlgh (@ Y Yo T PSPPI 69
Figure 14: Simple IDW scatterplots (left) confrashteith nested donor weighting method
(right). Low to high: @5, Q50, Q5 +vvvrrrrruniiiiieeeeeeeieeeieeetieiiie s s e s e e e e e e e e e e e eeeeennnens 72

Figure 15: PCA-based Regionalization performantep.left, median efficiency per number

of donor catchments used. Top right, distributiéreficiencies compared to a random

- 200 -



selection of donors (dashed line) and calibratediehgsolid grey line). Bottom left,
performance in a "metrological desert” SitUatiON...........ccoviiiiiiiiiiiiiiieeieas 97
Figure 16: Time-series of observed, regionalized amulated (with prior calibration)
streamflows on three example catchments, of god&D{A10) "median” (K2363010)
and poor (H6402030) PErfOrMAaNCES ...........oummmmmreeerrnnnnnaaaeeeaaaeeaseeerreemsrnnnrnnnnnnerne 98
Figure 17: Backwards-sorting Regionalization perfances. Top left, median efficiency per
number of donor catchments used. Top right, distidim of efficiencies compared to a
random selection of donors (dashed line) and cakor model (solid grey line). Bottom
left, performance in a "metrological desert” SitomRt ................ccoevvvveviiviiiiiiinnennn. 101
Figure 18: Performances of spatial proximity anggabgraphic similarity methods (dashed
grey and dashed black lines) confronted with thfopmance of an ideal method
perfectly combining the strenghts of the two apphes (solid black line).................. 105
Figure 19: Combining spatial proximity and physisahilarity, results of the intersection
regionalization method. Top left, median efficienggr number of donor catchments
used. Top right, distribution of efficiencies comg to a random selection of donors
(dashed line) and calibrated model (solid grey)lirgottom left, performance in a
"metrological deSert” SIUALION. .............oummmrereenereeeeeeeeereeerrrereerrrr s 107
Figure 20: Combining spatial proximity and physicgimilarity, results of the union
regionalization method. Left, distribution of efBacies compared to a random selection
of donors (dashed line) and calibrated model (sptay line). Right, performance in a
"metrological deSert” SIUALION. .............oummmeseeneeeeeeeeeeereeerreereeerre s 109
Figure 21: Distribution of the performances of thsted direct regionalizations, compared to
two benchmarks: random donor selection (dotted biney, calibrated model (solid grey

Figure 22: Comparison of the performances of tlsete direct regionalizations under the
"metrological desert” robDUSINESS tEST......ceeiiii e 111
Figure 23: Performances of several regionalizaapproaches in a "metrological desert"
situation. Upper dashed line: 0.9 quantile of tleefgomance distribution. Continuous
line: median. Lower dashed line: 0.1 qUaNtil@.maeee..eoeiieeieeeeiiiiieeeeee e 115
Figure 24: Sensitivity of several regionalizatioppeoaches to the lack of well-modeled
donors. Upper dashed line: 0.9 quantile of thequarénce distribution. Continuous line:
median. Lower dashed line: 0.1 quantile ..........coovvrveeviiiiiiiiii e, 119
Figure 25: Sensitivity of several regionalizatioppeoaches to the exclusion of badly
modeled donors. Upper dashed line: 0.9 quantilehef performance distribution.
Continuous line: median. Lower dashed line: 0.InG&...............coooeeiiiviiiiiiinnnnnns 120

- 201 -



Figure 26: Optimal number of donors for an indireegionalization scheme. Black line:
statistics regionalized with a regression and aw lidterpolation of the residuals. Grey
dashed line: statistics regionalized using a resgpas Grey dotted line: "true" statistics

Figure 27: Performance of the proposed "plain regjom approach”. The black line presents
the results obtained with flow statistics obtairtebugh a "plain regression approach”,
confronted with three benchmark comparisons: randtwnor (dotted grey), spatial
proximity (dashed grey) and calibrated model (sghely)..........coovvvvriiriiiiiennnnnn. 132

Figure 28: Performance of the proposed "regressigesiduals interpolation”. The black line
presents the results obtained with flow statistictained through a regression approach
combined with an IDW-based interpolation of residudt is confronted with three
benchmark comparisons: random donor (dotted gspatial proximity (dashed grey)
and calibrated model (SOlid grey) .....cooo i iceeeeeeei e 132

Figure 29: Performance of an ideal case wherdldestatistics could be regionalized with
no errors (black dashed line). It is confrontedhwihree benchmark comparisons:

random donor (dotted grey), spatial proximity (daslgrey) and calibrated model (solid

Figure 30: Performance of an ideal case wherdldestatistics could be regionalized with
no errors (black solid line). It is confronted withio benchmark comparisons: calibrated
model (grey solid line) and a “cheating” methodttisalects a-posteriori the best
possible donor among the catchments availablea#tabase (grey dashed line). .... 135

Figure 31 Performance of the proposed approach whkatting 5 parameter sets out of the
the first 10 neighboring catchments (solid blacke)i It is confronted with three
benchmark comparisons: random donor (dotted gspatial proximity (dashed grey)
and calibrated model (SOlid grey) .....coooiiceeeeeeiei e 136

Figure 32: "Metrological desert" test. The medidiciency of an indirect regionalization
method using regression-estimated flow statistilack line) is confronted with the
optimal physiographic-similarity method identifiedPart 3 (grey line). ................... 137

Figure 33: Performance distribution of regiondii@a results according to an FDC-based

criterion. Continuous grey line: calibration perfance. Dashed grey line: random

[g=To o] g F=1 4= 11 o] o PSSR 141
Figure 34: distribution of correlations for C2M-itahted and FDC-calibrated parameters 143
Figure 35: distribution of bias for C2M-calibratadd FDC-calibrated parameters............. 144

Figure 36: distribution of relative variability (dia) for C2M-calibrated and FDC-calibrated
02 U= T 0] T PP 145



Figure 37: distribution of correlations for direstd indirect regionalization methods........ 146
Figure 38: distribution of bias for direct and iretit regionalization methods ................ 471
Figure 39: distribution of relative variability fatirect and indirect regionalization methods

- 203 -



List of Tables

Table 1: Essential characteristics of the 865 catnit data set ...t cecaan. 14
Table 2: List of catchment descriptors availabletfios study ............ccccoevvvviiieiiiiiieeeeenn. 16

Table 3: Matrix of correlations between descriptes0.05 significance in bold characters)

Table 4: coefficient of determination and RMSE foe regressions between flow statistics
and catchment descriptors (calculated on log-tcansfd values). Av_Q stands for
average annual rUNOT. ... ... e e e 55

Table 5: Rankings of the significance of availallescriptors for each flow statistic
(threshold at P=0.05). .....coe i e 60

Table 6: Regression coefficients for each desarigial flow statistic...............ccevvveennnnnl 61

Table 7: Comparison in the results between regressstimated statistics and regression
with IDW interpolation of the residuals.........ccooiiiiiiiiiiiiiii e 65

Table 8: RMSE on log-values for simple IDW and IDWth area-ratio constraint .............. 68

Table 9: RMSE on log-values of flow statistics whesing simple IDW or IDW giving more

weight to nested catchments. The third column shthesesponent "a" presented at

[o10] ] | A o) PR 71
Table 10: Average efficiencies obtained when usinly one physiographic descriptor to

define SILE-SIMIIAIILY .......vveiieiei s e e e e e e e e e e e e eeas 95
Table 11: List of discarded descriptors at eaatit@n ...............ccccceeeiiviieieieiiiiiieeeeene, 100

- 204 -



