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Chapter 1

Introduction

Life and human dependence on water is well known all around the world.
Pressures on water resources are increasing due to different drivers such as
expanding populations, urban development, over-exploitation of groundwa-
ter, pollution and the uncertain threat of climate changes: as a consequence,
improving the management of water resources turs to be essential.
A fundamental step in order to reach this goal is becoming able to under-
stand the hydrologic cycle and estimating the fluxes among the water vol-
umes collected in the earth crust and in the atmosphere (See Fig.1.1). In
particular, knowing how rivers do behave is a fundamental information for
many reasons, such as managing extremes events, dimensioning reservoirs,
but also for preserving the environmental flow in order to sustain natural
ecosystems and for designing structures for river training.

FIGURE 1.1: Water fluxes
(www.ques10.com/p/29581/explain-run-off-in-hydrology-1/)

The water cycle includes processes (precipitation, interception, evapo-
transpiration, infiltration, percolation underground...) which are complex
and interact one to another. Moreover, since they can occur underground,
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they are not always measurable. This leads to the need of a tool for estimat-
ing these processes, namely the hydrologic models. In particular, the rainfall-
runoff models are used to assess the streamflows on river catchments.

1.1 Objectives of the analysis

The purpose of this report is to show some analyses performed in order to
become familiar with hydrological modelling. The study has been done on
three basins, in France and in Austria, with different hydro-climatic regimes
in order to understand the impact of the different model components (cali-
bration and validation periods, objective functions, criteria...) on the model
efficiency.
The main parts of the analysis will focus on the following topics:

• Performance of some calibration experiments - to familiarize with the
hydrological modelling in general

• Snow analysis - to understand the importance of coupling the rainfall-
runoff model with a snow accounting model (Cemaneige) in case of a
nival hydro-climate of the watershed

• Transformations versus extreme flows - in order to focus more on par-
ticular parts of the hydrograph

• Dam module - to study how the presence of a dam could affect the
streamflow downstream of a reservoir

The study has been monitored by Dr. Guillaume Thirel (Hydrologic team of
IRSTEA - Antony).

1.2 Introduction to the hydrological models

1.2.1 About hydrologic models in general

An hydrologic model can be defined as a ’simplification of a real-world system
(e.g., surface water, soil water, wetland, groundwater, estuary) that aids in under-
standing, predicting, and managing water resources’ [Wik].
Models were developed in parallel with computing power progress. Event-
based models originated in the 1930s and they can be used with hand calcula-
tion, while in the 1960s the first hydrologic models for continuous simulation
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of rainfall-runoff processes emerged: the computing power was sufficient to
represent many more processes in a simplified, “conceptual” way [Wheater,
2010].
A rainfall runoff-model is fed with a rainfall time-series (hyetograph) and
does generate a temporal time-series of streamflows, namely an hydrograph.
Other inputs required can be, for instance, temperatures or potential evapo-
transpiration. Rainfall-runoff models are mathematical models defined by a
set of equations: the latter are function of a number of parameters that can
assume different values in order to make the model flexible, namely suit-
able to reproduce the behaviour of different basins. The parameters are used
for taking into account, for instance, different watershed characteristics, soil
properties, vegetation cover, watershed topography, soil moisture content
and characteristics of groundwater aquifer. They are introduced to optimize
the model performance and they need to be estimated or, better, calibrated.
The calibration process is usually performed through an algorithm that opti-
mizes the error criterion chosen as objective function (see chapters 1.2.2 and
1.2.4). The error criteria are measures of how far the simulated values of
streamflow are from the observed ones: they are used during both the cali-
bration process (taking the name "objective functions", as just said) and the
validation one, being called goodness-of-fit criteria.
The objective functions and transformations that will be used for this study
are listed in the sections 1.2.4 and 1.2.5.

1.2.2 Calibration and Validation

Usually the procedures of calibration by means of optimization are based on
the comparison between observed and simulated data. Once the parame-
ters are set, simulated discharges are computed and then compared with ob-
served values by means of numerical error criteria: these criteria, when used
in calibration, are called "Objective functions" (see section 1.2.4) and they aim
at estimating the performances of the model and the goodness of the simu-
lated streamflows.

The first calibration procedure adopted was the manual one, by which
the parameters were just guessed, the model applied to the dataset and then
the observed values compared to the simulated ones. However, from the
nineties, with the spread of personal computers, optimization algorithms
have made the trial and error calibration procedure automatic, and therefore
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less time consuming: their goal is to look for the maximization (or minimiza-
tion, depending on the function) of the "Objective Function".

In order to get a robust model, namely a model reliable on different hy-
drologic conditions, one would need to calibrate it on a very wide observa-
tion period. Nevertheless, having very long data time series is quite infre-
quent in hydrology, where the samples are usually rather limited. In addi-
tion, the calibrated model, before being used in practice, has to be validated:
validation allows to analyze the performance of a model, testing it on a dis-
charge sample that differs from the one used for calibration. The same func-
tions used as "objective function" during the calibration process, can be used
with the name of "criteria" in the validation one.
Practically speaking, the observed data are split in two parts: the first one
is used for calibration, whereas the second one for validation. Later, the test
can be performed inverting the two groups in order to have performed the
validation twice and checked the robustness of the model. In order to initial-
ize the values of the state variables inside the model, a warm up period is
taken into account just before the the calibration and the validation periods:
usually it ranges from one to few years.

1.2.3 Lumped and distributed models

Hydrological models can be distinguished between physically based and
lumped conceptually based.
The first ones are based on known scientific principles of energy and water
fluxes, while the latter type considers three basic processes within a river
basin: the loss of water from storage to atmosphere, storage of water (in soil,
vegetation, aquifer, and rivers) and routing of flow over the surface.
In the conceptual models, the catchment is considered as a single unit, and
the different parts of the model structure (like the parameters, the functions,
the storages...) do not have a direct physical interpretation in the real world
[Payan et al., 2008].
Regarding the distributed ones, the watershed can be divided in a rectan-
gular grid mesh or it can be discretized into a limited number of sub-basins
depending on the catchment elevations, topography and the drainage char-
acteristics [Zahidul, 2011]. In the first case the model is fully distributed,
whereas it is semi-distributed otherwise: on each one of the sub-catchment
the model is applied in a lumped way.
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1.2.4 Objective functions (and criteria)

As already mentioned, the maximization (or minimization) of the objective
functions are what the optimization algorithm looks for during the calibra-
tion process in order to find the best parameters for the model. These func-
tions are also calculated as criteria during the validation process in order to
check the goodness of the model.
The four objective functions provided with the airGR package (see 2.1) and
used as error criteria in the next chapters are the Root Mean Square Error
(RMSE), the Nash-Sutcliffe Efficiency (NSE), the Kling Gupta Efficiency (KGE)
and the Modified Kling Gupta Efficiency (KGE’) described below.

• Root Mean Square Error (RMSE)

RMSE =

√
∑i(Q

(i)
SIM −Q(i)

OBS)
2

N
(1.1)

• Nash-Sutcliffe Efficiency (NSE)

NSE = 1− ∑i(Q
(i)
SIM −Q(i)

OBS)
2

∑i(Q
(i)
OBS − µ(QOBS))2

(1.2)

Where:

– Q(i)
OBS is the observed flow at the i time-step

– Q(i)
SIM is the simulated flow at the i time-step

– N is the length of the sample (time-series)

– µ(QOBS) is the mean of the observed discharges

The value of NSE can vary in ]−∞, 1], with the perfect model perfor-
mances if NSE = 1, while if NSE = 0 the performances are equal to com-
puting the mean of the observed discharges, and finally, if NSE < 0 then the
model predictive power is worse than computing the simple mean.
Looking at the equations above it’s clear that the RMSE and NSE are closely
related: in fact, they are two modified versions of the same absolute criteria
Mean Square Error (see Eq. 1.3): the RMSE is its squared root, while the NSE
is its normalized version, therefore a relative criteria. A reason why RMSE
and MSE are not widely used criteria, is that they depend on the units of
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measure of the predicted variable, so they do not allow to compare perfor-
mances of models run to simulate different phenomena [Gupta et al., 2009].

MSE =
∑i(Q

(i)
SIM −Q(i)

OBS)
2

N
(1.3)

The NSE criteria has been one of the most often used performance criteria
in hydrology [Guse et al., 2017]: however, its suitability has been discussed
by many authors (such as [Schaefli and Gupta, 2007]), mainly because it uses
the mean of the observed streamflows as reference, which is not an appro-
priate benchmark model in case of basins with different hydrologic regimes:
using the mean as baseline leads, for instance, to the overestimation of the
model performances for strongly seasonal time series [Gupta et al., 2009].
From that, the need of look for better error criteria emerged.
With the goal of improving the estimation of the model performance, the
NSE criterion can be split into separate components that can be directly re-
lated to the model error: this allows each of them to be analysed separately
in order to understand how they contribute to the model performance. This
approach results in the definition of a new criterion, namely the KGE one
[Gupta et al., 2009].

• Kling Gupta Efficiency (KGE) [Gupta et al., 2009]

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (1.4)

• Modified Kling Gupta Efficiency (KGE’) [Kling et al., 2012]

KGE′ = 1−
√
(r− 1)2 + (γ− 1)2 + (β− 1)2 (1.5)

Where:

– r = Cov(x,y)√
Var(x)Var(y)

Pearson coefficient [-]

– α = σ(QSIM)/σ(QOBS) variability ratio used for KGE [-]

– β = µ(QSIM)/µ(QOBS) bias ratio [-]

– γ = CV(QSIM)/CV(QOBS) variability ratio used for KGE′ [-]

r is the Pearson linear correlation coefficient of QSIM with respect to QOBS,
σ is the standard deviation of the discharges distribution, µ is the average of
the discharges, "CV" is the coefficient of variation of the observed discharges,
namely σ/µ. The best values to aim at are RMSE = 0, NSE = 1, KGE = 1 and
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KGE’ = 1.
The optimal value of r, α, β and γ is equal to 1.
Both α and γ are measures of the relative variability in the simulated and
observed values.

With the KGE is possible to study the ability of the model to reproduce
different aspects of the observed streamflow distribution (i.e. the mean, the
standard deviation and the correlation): the optimal value of this criterion is
reached when all these components assume their target values (namely 1);
therefore the optimization of KGE consists in looking for the best combina-
tion of r, α and β [Guse et al., 2017]. Additionally, it is possible to put a dif-
ferent weight on the different components of the criterion using the formula
1.6 that includes the sr, sα and sβ scaling factors.

KGE = 1−
√
[sr(r− 1)2] + [sα(α− 1)2] + [sβ(β− 1)2] (1.6)

Moreover, in order to have the variability ratio α uncorrelated with the
bias ratio β, the numerator and denominator of α can be divided by the nu-
merator and denominator of β, leading to obtain γ as new variability ratio,
and to get KGE′ as a modified Kling Gupta Efficiency error criterion [Kling
et al., 2012]. This turns α to be independent from the mean of the distri-
bution and therefore helps the variation to be unaffected by the error that,
for instance, could occur when the precipitation inputs are biased. As al-
ready said, the coefficients incorporated in the KGE and KGE’ formula, give
different information on different aspects of the simulated hydrograph: the
Pearson correlation coefficient r is a measure of the temporal dynamics (tim-
ing), while α (or γ) and β are indexes of how well the distribution of dis-
charges is preserved [Kling et al., 2012]. In particular β tells if, on average,
the discharges have been overestimated or underestimated with respect to
the observed ones, whereas α and γ give information about the variation of
the simulated discharges relatively to the one of the observed.

1.2.5 Transformations

In order to focus on particular ranges of simulated streamflows, some trans-
formations can be applied to the discharge value. The three transformations
of the output variable, which generally is the streamflow at the closure sec-
tion, frequently used are:

• Square root function:
√

Q
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• Inverse function: 1/Q

• Logarithmic function log(Q)

According to the target of the analysis, other hydrological variables can be
transformed.
A different transformation can be used depending on the range of flows that
have to be analyzed: in particular, the not-transformed streamflows are used
to put more weight on high flows, the square root function does not favour
high or low flows, whereas the inverse function puts more weight on low
flows [Santos et al., 2018].
The logarithmic function log(Q) can be also used to analyse low discharges,
but it won’t be take into account in the following analysis.
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Chapter 2

GR Models in airGR R-package
and case study

2.1 Intro

In order to use the GR hydrological models, I worked in the airGR package
framework, which proposes functions to run the different models, calibra-
tions and transformations [Coron et al., 2017][Coron et al., 2018]. The version
of the R package used is 1.0.15.2.

The first GR models were developed by Claude Michel at the beginning of
the 1980s, starting from a simple module structure and increasing the com-
plexity every time a better performance model was obtained [Coron et al.,
2017].
The several existing models differ for their complexity, therefore for the time-
step and the number of parameters, and they are used in different coun-
tries for various purposes, such as water resources assessment, flood and
drought estimation and forecast, land use and climate change impact assess-
ment [Coron et al., 2017].
GR stands for Génie Rural, literally Rural Engineering, and the letters high-
lighting the time-step of the models in its names are:

• H stands for horaire (hourly) time-step

• J stands for journalier (daily) time-step

• M stands for mensuel (monthly) time-step

• A stands for annuel (annual) time-step

The number present between "GR" and the time-step delineates the number
of free parameters of the model, i.e. the number of parameters to calibrate.



Chapter 2. GR Models in airGR R-package and case study 10

2.2 GR4J

The GR4J model is a four-parameter daily lumped rainfall-runoff model,
which belongs to the SMA (soil moisture accounting) models. The two in-
puts of the model are the precipitation depth P [mm] and the potential evap-
otranspiration PE [mm]; as first step the net rainfall Pn and the net evapo-
transpiration En are calculated [Perrin et al., 2003]. The model is built up
with a soil moisture (or production) store with an evolution described by the
power function of its storage S; this first reservoir is followed by a transfer
function that, in the daily version of the model, splits the water in two fluxes
equivalent to 90% and 10% of the total: the first one is led to the unit hydro-
graph UH1 and then to a non-linear routing store, whereas the second skips
the store, being routed directly by UH2. UH1 and UH2 are used to simu-
late the time lag between the precipitation and the streamflow peak ([Perrin
et al., 2003]). Moreover, a groundwater exchange function is applied to the
two fluxes (Q9 and Q1) and is described by a power law of the routing store
level R: finally, the two resulting streamflows Qr and Qd are summed up in
order to obtain the final Q (see fig. 2.1).

The four parameters characterizing the GR4J model are:

• x1 [mm]: maximum capacity of SMA (Soil Moisture Accounting) store

• x2 [mm/day] : groundwater exchange coefficient

• x3 [mm]: capacity of routing store

• x4 [day]: time base of Unit Hydrographs

Median 80% conf. int.
X1 (mm) 350 100 - 1200

X2 (mm/day) 0 -5 to 3

X3 (mm) 90 20 - 300

X4 (day) 1.7 1.1 - 2.9

TABLE 2.1: Statistics of GR4J parameters[Perrin et al., 2003]

In table 2.1 are reported the mean values and the 80% confidence intervals
got from the 0.1 and 0.9 percentiles of the distribution of models run on a
sample of 429 catchments in Australia, Brazil, France, the Ivory Coast and the
United States [Perrin et al., 2001]. It has to be noted that parameters ranges
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(between the maximum and minimum values) are not used in this case.
All the formula that build up the GR4J model are listed in fig 2.2 while its
structure is reported in fig. 2.1.

FIGURE 2.1: Structure of the GR4J and GR5J rainfall-runoff
models [Pushpalatha et al., 2011]



Chapter 2. GR Models in airGR R-package and case study 12

1. State-of-the-art of rainfall-runoff modelling and scale issues in hydrology: A critical overview 

50 

 

Multi-annual time step (Turc eq., in Mouelhi, 2003) Annual time step (GR1A, Mouelhi et al., 2006a)) 

  

Monthly time step (GR2M, Mouelhi et al., 2006b) 

  

Daily time step (GR4J, Perrin et al., 2003) 

 

 

FIGURE 1.10 – GR models chain at multiannual, annual, monthly and daily time steps. 

 

FIGURE 2.2: Formulas of the GR4J rainfall-runoff model [Perrin
et al., 2003]

2.3 GR5J and GR6J

The need of getting improved low-flow simulations led to the necessity of
upgrading the GR4J model. Typically, the water exchange between surface
and groundwater is one of the main factors that affects the low-flow regime
of the catchment [Pushpalatha et al., 2011], therefore a different modelling of
the groundwater exchange function F has been taken into account. The GR5J
and GR6J models resulted to be a valid solution for the low flows simulating
issue; however, they are not supposed to alter the simulation of high flows
[Pushpalatha et al., 2011]. The five parameters version of the GRJ model
involves a new formulation of the groundwater exchange that includes x5

as F = x2(
R
x3
− x5) (see fig.2.1). In the GR6J model the modelling of the

groundwater exchange is further improved including an additional exponen-
tial store placed in parallel with the already existing routing one (see fig.2.3):



Chapter 2. GR Models in airGR R-package and case study 13

SC is the splitting coefficient of effective rainfall between the two stores [Push-
palatha et al., 2011]; it is a fixed parameter equal to 0.4. SC is equivalent to
the variable "c" in the function frun_GR6J.f of the airGR package source.

The additional parameters of GR5J and GR6J with respect to GR4J are (see
fig. 2.1 and fig. 2.3):

• x5 [-]: threshold for change in F sign (in GR5J and GR6J only)

• x6 [mm]: capacity of the new routing store (in GR6J only)

module is made of linear stores. This model structure can be

adapted to obtain several serial or parallel stores. Despite this flex-

ibility, the authors indicate that in most cases, having two parallel

stores is the most efficient configuration.

Here we analysed the sensitivity of the model’s performance to

the arrangement of routing stores, be they added to the existing

parallel or serial stores. Two versions were tested, in which a

new parallel store similar to the existing one was added (version

M5, see Fig. 5) or a new serial store (version M6). Table 3 shows

the mean performance of these two versions. The M5 version

reaches higher efficiency values than M6. We also tried to add

one more parallel routing store to obtain a third routed flow com-

ponent (versions M9–M11 in Table 1). The results presented in Ta-

ble 4 indicate that the improvements for low-flow simulation are

not significant, which means that this additional complexity is

not warranted by the data.

This confirms that the best compromise on average is to have

two parallel stores. The series arrangement did not prove to be

an efficient option. Therefore, following Jakeman et al. (1990), we

suggest that the complexity of the routing part of the model should

be increased by considering two independent flow components.

This is a solution that provides more varied flow dynamics.

3.1.4. Does the formulation of the routing stores matter?

Here we tried to identify the best formulation of routing stores,

i.e. the solution for which the model shows higher efficiency val-

ues. There is a variety of possible formulations of routing stores,

ranging from linear to non-linear stores, e.g. power law or expo-

nential stores (see Michel et al., 2003, for a good formulation of this

store). In previous studies (see Edijatno and Michel, 1989; Edijatno

et al., 1999), a power-5 non-linear routing store was identified as

the most efficient. When adding a new parallel store, another for-

mulation may be interesting to introduce a variety of behaviours in

the flow components.
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FIGURE 2.3: Structure of the GR6J rainfall-runoff model [Push-
palatha et al., 2011]

2.4 CemaNeige

CemaNeige is a semi-distributed model developed in order to improve the
simulation of the streamflows in river catchments affected by the presence of
snow. It is a two-parameter daily time-step snow accounting model and it
gives as final output the simulated snowmelt, which is summed to rainfall.
The main five functions of CemaNeige are [Valéry et al., 2014]:
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• Determination of the solid fraction of precipitation

• Snow accumulation

• Updating of the snowpack cold-content

• Potential snow-melt computation

• Actual snow-melt computation

In particular the watershed is divided into different elevations sub-catchments
with equal areas, namely elevation zones, which allow the model to simu-
late the evolution of the snow cover consistently with the different altitudes.
The CemaNeige model needs precipitation and temperatures as input data:
therefore, as second step, these data are estimated for each elevation zone.
Successively, a differentiation between solid and liquid precipitation is per-
formed depending on the average altitude of each sub-catchment. Then the
snow is collected in a theoretical reservoir that represents the snow pack and
is supplied only by the solid part of the precipitation: the snow pack, melt-
ing, will produce water that will be added to the liquid precipitation, and
together they will make up the final streamflow. This melting process is sim-
ulated through the transfer function (see fig. 2.4). The melted snow output
of CemaNeige then becomes one of the inputs of the rainfall-runoff model.
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is to divide the catchment into 5 elevation zones of equal area.

Inputs (P, Tmean, Tmin and Tmax) are extrapolated to mean altitude

of every elevation zone using:

� A multiplicative altitudinal gradient for precipitation (one con-

stant value for the year, see Valéry et al. (2010)).

� Monthly additive altitudinal gradients for air temperatures,

separately calibrated for Tmean, Tmin and Tmax (see Valéry et al.

2010).

On each elevation band, the five functions of CemaNeige

described in Table 2 are applied with a unique set of calibrated

parameters (hG1, hG2). Internal states (snowpack quantity, G and

its cold-content, eTG) vary independently on each elevation zone

according to the differences in input values.

On every elevation zone, at every time step, two outputs are

computed: rain and snowmelt, which are added together. To esti-

mate the total liquid output of CemaNeige at the catchment scale,

the five outputs of every band are averaged (with an equal weight,

since each band corresponds to one fifth of the catchment). Finally,

Cemaneige’s output is used as input to the combined hydrological

model.

4. Sensitivity analysis: questioning the essential features of the

CemaNeige SAR

As it would be too long to present all the tests performed during

the development of CemaNeige, we preferred to present results on

a systematic sensitivity analysis for the main components which

we did or did not include in our snow accounting routine. In the

following sections, the sensitivity analysis of the CemaNeige rou-

tine is presented as the answer to seven questions. Each time, we

compare the final version of CemaNeige with an alternative ver-

sion. When relevant, we present an example from our dataset,

and then we give the overall result over the entire dataset. All

results shown were obtained in validation.

All the efficiency results of the different SAR versions presented

in this article are summarized in Table 3. Note that the efficiency of

the SARs is only evaluated based on streamflow simulations.

Although we only present the results for SARs associated with

the GR4J hydrological model (Perrin et al., 2003) for the sake of

brevity, we also systematically tested all the variants with three

other rainfall-runoff models to ensure independence between the

structures of the SAR and the hydrological model.

4.1. Question 1: does a SAR require a subdivision of the catchment into

elevation zones?

A snow accounting routine can be lumped, distributed or semi-

distributed. A very common and intuitive choice is to divide catch-

ments into several elevation zones to take into account the close

dependency between the snow occurrence and altitude at the

catchment scale. Four out of the six SARs presented in the compan-

ion article (Valéry et al., 2014) chose this approach with altitudinal

subdivisions: CEQUeau (Morin, 2002), HBV-SAR (Bergström, 1975;

Lindström et al., 1997), NAM (DHI, 2009) and M_SNE (Paquet,

2004).

Fig. 2 illustrates the differences in simulations obtained by a

lumped version of Cemaneige (on the left) and by the final version

with five elevation bands (on the right) on the Arve river at Arthaz.

This catchment of 1664 km2 is located in the French Alps, with alti-

tudes between 780 and 4800 m a.s.l. In February 1999, the lumped

version considered that all the precipitation is in solid form and

simulated an important period of accumulation without any simu-

lated runoff at the basin outlet. This behaviour does not fit with

streamflow observations (see circled part in Fig. 2). But the semi-

distributed CemaNeige interpreted precipitation as snowfall in

the highest elevation bands only: precipitation was interpreted

Table 1

Details on the three criteria used to assess SAR performances.

Criterion Computation period in the year Evaluation objectives

Cyear Whole year Overall performance

Csnow 6-Month period from December to May Performance during snow accumulation and melt

Cmelt 2-Month period: for moderately snow-affected catchments, February and March, and for

largely snow-affected catchments, April and May

Performance during snowmelt only (often considered as the

most critical period of simulation)

(a)

(b)

cov

cov

cov

Fig. 1. (a) Conceptual scheme and (b) equations of the CemaNeige snow accounting

routine.

1178 A. Valéry et al. / Journal of Hydrology 517 (2014) 1176–1187

FIGURE 2.4: Structure of the CemaNeige snow accounting rou-
tine model [Valéry et al., 2014]

The two parameters to be calibrated in this case are:

• c1 [-]: weighting coefficient for snow pack thermal state

• c2 [mm/◦C/day]: degree-day melt coefficient

Regarding the input data needed to run CemaNeige, also the Zinputs and
the HypsoData vectors are needed.

• Zinputs: mean of the elevations at which input precipitation and mean
air temperature are calculated for the considered basin

• HypsoData: it describes the hypsometric curve though a vector of 101
components, including the minimum, the maximum and the 99 quan-
tiles (from q01 to q99) for the distribution of the elevations in the consid-
ered basin.
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This allows extrapolating the precipitation and temperature values at the al-
titudes of the chosen altitude layers, which are typically 5.

2.5 Calibration algorithm

The final goal of an optimization algorithm is the maximization or minimiza-
tion of an objective function performed choosing its "best available" input
values within an allowed set. The solution that minimizes (or maximize, de-
pending on the target) the objective function is the optimal solution.
The calibration algorithm proposed in airGR to optimise the error criterion
selected as objective function, is the procedure proposed by Claude Michel
(through the "Calibration_Michel()" function [Perrin, 2000]): this algorithm
is the one used for all the analyses described in this report.
On the other hand, different optimization methods can be used combined
with airGR, such as the "nlminb()" function, the Different Evolution strategy
("DEoptim()"), the Particle Swarm strategy ("hydroPSO()") and the MA-LS-
Chains one ("malschains()"). How to use all these alternatives is explained in
the two vignettes "Plugging in new calibration algorithms in airGR" and "Pa-
rameter estimation within a Bayesian MCMC framework" of the airGR pack-
age (see https://cran.r-project.org/web/packages/airGR/index.html).

In short, the Claude Michel algorithm starts with a screening to define the
initial set of parameters: a screening is performed using either a rough pre-
defined grid (considering various initial values for each parameter) or a list
of initial parameter sets. Then a steepest descent local search algorithm is
performed, starting from the result of the screening procedure (see function
Calibration_Micheal in the airGR package [Coron et al., 2017]).
The first step of the iterative search consists in calculating the objective func-
tion for the initial vector of n parameters x0 = (x0

1, x0
2, ..., x0

i , ..., x0
n). Then, each

i-parameter is subsequently modified adding and subtracting a ∆x in order to
get two new sets of parameters (x0

1, x0
2, ..., x0

i − ∆x, ..., x0
n) and (x0

1, x0
2, ..., x0

i +

∆x, ..., x0
n): for all the 2 ∗ n new sets of parameters, the objective function is

computed and the vector which gives the best improvement of the objective
function is chosen as x1, namely the initial vector for the following step. The
objective function is computed again for the latter vector, hence the follow-
ing iteration starts and so on. x1 is identical to x0 except for the component
x0

i − ∆x or x0
i + ∆x. The procedure stops once the ∆x becomes smaller than a

predefined threshold ∆xmin: hence, the best vector of parameters x∗ is found

https://cran.r-project.org/web/packages/airGR/index.html
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[Perrin, 2000]. The objective function, the initial ∆x0 and the minimum ∆xmin

have to be chosen by the user: for instance, Perrin [2000] fixed ∆x0 = 0.64
and ∆xmin = 0.01

2.6 Study regions

The analysis that follows will concern three different catchments: two in
France and one in Austria. The first French basin is located in Brittany, close
to the Atlantic Ocean, while the second one is in the south of France. The
latter, together with the Austrian river, is located on the Alps (Fig. 2.5). Also
a fourth basin will be described in this paragraph, but it will be only used to
perform some quick analyses that will appear only in the last chapter of this
report (chapter 6).

FIGURE 2.5: Location of the three basins (gauges)
www.geoportail.gouv.fr

www.geoportail.gouv.fr
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2.6.1 Durance river at Embrun - X0310010

"La Durance" (see Fig. 2.6) is an alpine river, inflow of the Serre-Ponçon hy-
dropower reservoir.
It has its sources on the Chenaillet mount, close to the Italian border and 2.634
m above the sea level. It ends in the Rhône, few kilometers from Avignon.

FIGURE 2.6: Map of the Durance river catchment
webgr.irstea.fr/wp-content/uploads/2016/10/X0310010.

jpg

Area
[km2]

Mean
elevation

[m]
Basin

X0310010
2282.76 2104.35

TABLE 2.2: Area and mean elevation of the Alpine French basin
(X0310010)

webgr.irstea.fr/wp-content/uploads/2016/10/X0310010.jpg
webgr.irstea.fr/wp-content/uploads/2016/10/X0310010.jpg
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2.6.2 Blavet river at Mûr-de-Bretagne (Guerlédan) - J5412110

"Le Blavet" flows in the French Brittany region mainly from north to south,
up to the Atlantic Ocean. Getting closer to Mûr-de-Bretagne, the river turns
into the man made Guerlédan lake: the reservoir was built during the 1930,
in order to supply electricity to the central part of Brittany.

FIGURE 2.7: Map of the Blavet river (J5412110) catchment
webgr.irstea.fr/wp-content/uploads/2016/10/J5412110.

jpg

Area
[km2]

Mean
elevation

[m]
Basin

J5412110
675.64 214.53

TABLE 2.3: Area and mean elevation of the Breton French basin
(J5412110)

webgr.irstea.fr/wp-content/uploads/2016/10/J5412110.jpg
webgr.irstea.fr/wp-content/uploads/2016/10/J5412110.jpg
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2.6.3 Lutz river at Garsella - HZBnr. 200105

The Lutz river (gauge Garsella) flows through the Great Walser Valley (Großes
Walsertal): it’s an alpine saw-cut valley located in the northern part of the
Limestone Alps, economically important also because source of drinking wa-
ter.

v

FIGURE 2.8: Map of the Lutz river (200105) catchment - Garsella
gauge in blue

Area
[km2]

Mean
elevation

[m]
Basin
200105

95.50 1600.24

TABLE 2.4: Area and mean elevation of the Alpine Austrian
basin (200105)

2.6.4 Ill river at Oberhergheim - A1320310

The Ill river starts from the Jura mountains and flows in the Alsace region, in
the north-eastern France.
As already introduced, this catchment will be used just for a quick final anal-
ysis described at the end of this report. In particular it will be used to study
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the impact of a dam on a watershed: in this basin, in fact, a barrage diverts
the streamflow of the Ill river to create a reservoir.

FIGURE 2.9: Map of the Lill river (A1320310) catchment
webgr.irstea.fr/wp-content/uploads/2016/10/J5412110.

jpg

2.6.5 Mean input data and areas of the three main basins

In order to highlight the different climates of the basins over the two different
calibration used, the table in the following Tab.2.10 has been computed from
the available time-series.

webgr.irstea.fr/wp-content/uploads/2016/10/J5412110.jpg
webgr.irstea.fr/wp-content/uploads/2016/10/J5412110.jpg
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Basin

Mean_X03100101

Ptot_Cal1 
 [mm/day]

Mean_J54121102

Ptot_Cal2 
 [mm/day]

Mean_2001053

Temp_Cal1 
 [°C]

2.85

Temp_Cal2 
 [°C]

2.70

Qobs_Cal1 
 [mm/day]

5.78

Qobs_Cal2 
 [mm/day]

2.82

3.06

5.53

2.47

9.90

3.54

 2.95

10.53

 4.05

2.05

1.39

5.97

1.86

1.40

5.55

FIGURE 2.10: Mean rainfall and temperature over the calibra-
tion periods (Cal1 and Cal2 are the 1st and the 2nd half of the
sample time-series; see chapter 3.1 for the detailed description

of the calibration periods)

2.7 Available data

The French data used for the analysis have been provided by Dr. Guillaume
Thirel (IRSTEA), while the Austrian ones by TU Wien, inside a collaboration
project with the University of Bologna.
They consist in time-series of daily precipitation, daily potential evapotran-
spiration, daily streamflows and daily temperature values.
Regarding France, the observed discharges source is the Banque Hydro (www.
hydro.eaufrance.fr) while the meteo data come from Météo-France [Vidal
et al., 2009].

The French basins meteo data are available from the 01/08/1958 to the 31/07/2010:
the Qobs values for "La Durance" are available from the 01/01/1960 to the
31/07/2010, while streamflows data of the Blavet river go from 01/08/1958
up to 31/12/2008.
Regarding the Austrian basin data, instead, they all go from the 01/01/1976
to the 31/12/2008.
In order to use the CemaNeige model, also the Zinputs and the HypsoData
were required as input data (see paragraph 2.4).
The Austrian meteorological data were given per each altitudinal range, namely
splitting the catchment area in zones, each of them spanning a 200 m eleva-
tion range. Due to the fact that the models have to be applied in a lumped
way, all the Austrian data have been spatially aggregated by means of the
weighted average with respect to the area of each elevation zone.

www.hydro.eaufrance.fr
www.hydro.eaufrance.fr
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2.8 Analysis of the hydro-climatic regimes

In order to understand the hydro-climatic regimes of the three rivers ob-
ject of this analysis, the monthly average of observed streamflows and ob-
served rainfalls have been plotted. Additionally, for the two alpine basins,
the monthly snowfall has been simulated with CemaNeige over the Cal1 (see
paragraph 4.2 for details about the objective functions used); then it has been
added to the graphs (see Fig.2.11 and 2.12). For the Brittany basin the es-
timation of solid precipitation has been avoided due to the already known
non-nival hydroclimatic regime of the basin (see Fig. 2.13).

The values taken into account for the following study are just monthly av-
erages, therefore the fluctuation of discharges would be greater over shorter
periods and would change depending on the year considered.
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2.8.1 Durance river at Embrun - X0310010

FIGURE 2.11: Hydro-climate basin X0310010

The presence of the Alps in the central European continent profoundly affects
the climate of all the surrounding regions and areas, including the Durance
basin: the latter is a nival regime basin [Wik]. From the trend that emerges
in Fig.2.11 we can infer that water fallen as precipitation during autumn,
winter and spring is stored in the form of snow and it’s gradually released
during the following summer: this can be understood focusing on the time
lag present between the peaks of the precipitation and of the discharge: the
biggest discharges occur in the early summer, with a peak in June, while the
higher precipitation (rainfall and snowfall together) are the winter ones. It
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can also be observed that the streamflow is never zero: this can also be due
to the accumulated snow (and glaciers) that melts and feeds the water course
even in the hottest season, allowing to maintain a regular flow.

2.8.2 Lutz river at Garsella - 200105

FIGURE 2.12: Hydro-climate basin 200105

Similar considerations to those done for the Alpine Durance nival basin can
be done also in this case. With respect to "La Durance", though, it can be
noted that both the precipitation and streamflow amounts are higher for the
Austrian basin. Also in this case the peak of the discharge doesn’t coincide
perfectly with the one of the rainfall: this offset between them can be due to
the fact that the snow storage delays the water supply to the river, shifting it
towards the warmer months.
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2.8.3 Blavet river at Mûr-de-Bretagne (Guerlédan) - J5412110

FIGURE 2.13: Hydro-climate basin J5412110

Looking at Fig.2.13 it can be noticed that streamflows oscillate between 20
mm and 100 mm per month: the highest discharges appear to occur between
December and March, with a maximum in January. The driest period instead
is the summer one, from the end of June to the last days of September, with a
minimum in August-September; from October the streamflow starts increas-
ing again.
With respect to the other two basins, it can be noticed that the difference
between precipitation and discharge in this case is higher, probably due to
the substantial amount of evapotranspiration. All these considerations are
consistent with the Brittany region climate, which in fact is oceanic: given
that precipitation is more homogeneously dispersed throughout the year,
typically the dry season is missing, with at least 40 mm of precipitation per
month. Usually rain is the most common form of precipitation for the major-
ity of the year [Wik].
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Chapter 3

Calibration experiments

3.1 Calibration experiments and analysis of per-

formances in validation

As already mentioned in chapter 1, the main purpose of the implementa-
tion analysis is to test how the different aspects of the hydrological model
can play a role in its efficiency: the structure of the model itself, the calibra-
tion and validation periods, the objective functions (including goodness-of-
fit criteria and the transformations) can influence the simulations in different
ways, changing drastically its quality. In particular the analysis can focus on
high or on low flows only, therefore how the different transformations can
be used for a more efficient study results to be crucial. Other factors to be
studied are, for instance, the hydroclimate regime of the catchment and, pos-
sibly, the presence of snow on the basin: knowing that can be fundamental
to run a good simulation. All these aspects will be discussed in details in the
following chapters.

As first step of the analysis that follows, the GR4J, GR5J, GR6J and GR4J+CemaNeige
models have been run over the three basins, combining different calibration
periods, validation periods, objective functions and criteria, for a total of 192
simulations (3 basins, 4 models, 2 calibrations periods, 2 validation periods,
4 objective functions for calibration). The result of all the simulations is a
dataframe including the objective function values, criteria values and param-
eters got for all the different combinations (see a part of it in fig. 3.1).
The several simulations were performed combining:

• Calibration periods: 1961-1985 (Cal1) and 1986-2010 (Cal2) for the two
French basins, and 1978-1993 (Cal1) and 1994-2008 (Cal2) for the Aus-
trian one
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• Validation periods: 1961-1985 (Val1)and 1986-2010 (Val2) for the two
French basins, and 1978-1993 and 1994-2008 for the Austrian one

• Objective functions (and criteria): Root Mean Square Error (RMSE),
Nash-Sutcliffe Efficiency (NSE), Kling Gupta Efficiency (KGE and KGE’)
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FIGURE 3.1: Dataframe of results including (going from the col-
umn on the left to the one on the right hand side) the basin and
the model names, the calibration and the validation periods,
the objective function name and value, the model parameters

values and finally the evaluation criteria names and values.

Then depending on the analysis that has to be performed, I extracted from
the just mentioned dataframe the results needed (see Appendix B for the
whole dataframe).

With the goal of underlining the role of the four coefficients used to compute
the two Kling-Gupta criteria (KGE and KGE’ - see chapter 1.2.4), I tabled
the ones got after a series of simulations performed with GR4J + Cemaneige
on the French Alpine basin (X0310010). I performed different calibrations
changing calibration period and objective function; for each of them the per-
formance of the model has then been evaluated both with KGE and KGE’,
extracting from the results got with airGR the values of the coefficients r, α, β

and γ (see Fig. 3.2).
In order to highlight how these parameters affect the error criteria values, I
computed the difference of both the criteria values (KGE and KGE’) and the
coefficients, with their optimal values, which is 1 in all the cases (see Fig. 3.3).
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FIGURE 3.2: Coefficients used to calculate KGE and KGE’ error
criteria values obtained for different calibration processes

FIGURE 3.3: Absolute differences between KGE value, KGE’
value, the coefficients used to calculate the just mentioned error
criteria values, and their optimal value (i.e. 1), for different cal-
ibration processes. The last two rows highlight the minimum
(best case) and the maximum (worst case) absolute value for

each column.

As expected, the Fig.3.3 shows that the best KGE and KGE’ criteria values
(the ones closer to 1, therefore with minimum deviations) correspond to the
best values of r, α, β and γ (see the blue rectangles in the figure), and vice
versa happens for the worst KGE and KGE’ with the related coefficients (red
rectangles).
Comparing the last four columns of the table in Fig. 3.3, it emerges that the
Pearson coefficient is the parameter that on average brings the biggest error
in the computation of the two criteria values. The r value results to be the
least variable one within the set of calibrations performed: its distance from
1 ranges between 0.07 and 0.08, which means that the level of agreement in
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temporal dynamics between measured and simulated discharges time series
is between 92% and 93%.
Analysing the variability coefficients (α and γ) with respect to β, it can be
noted that the distance of the optimal value from β is always smaller than (or
very similar to) the one of α and γ, meaning that the bias ratio affect the error
of KGE and KGE’ less than what the variability coefficients do. Additionally
it can be noted that when α is close to 1, also β it is: as a consequence, their
ratio is close to the unit too, and therefore also γ is not far from 1. β is bigger
than one in the majority of the cases, hinting that the discharges are mostly
overestimated (positive bias).

3.2 Parameters versus objective functions

(only with GR4J + CemaNeige)

In order to understand how much the objective function and the calibration
period affect the optimization of the model parameters, the latter have been
plotted for each basin as function of the objective functions and calibration
periods. Only the GR4J model plus CemaNeige has been considered for this
section, therefore the parameters analyzed are x1, x2, x3, x4, c1 and c2.
In the very first analysis, the plots were got taking into account RMSE, NSE,
KGE and KGE’. However, after a first scan of the charts, it has been noticed
that the plots of the parameters obtained with RMSE and NSE were overlap-
ping; hence, the plots related to RMSE has been removed. The reason why
this happened is because NSE is function of RMSE (see chapter 1.2.4).

The meaning of the parameters characterizing GR4J and CemaNeige has
been already explained in chapter 2. For the following analysis a particu-
lar reference will be done to the mean values of temperature, precipitation
and discharges over the two calibration periods listed in chapter 2.6.5: for all
the three basins the mean temperature increases of about 0.5 - 0.6 ◦C between
the first and the second calibration periods (see Fig.2.10).

Before performing the following analysis, I used airGRteaching [Delaigue et al.,
2018b][Delaigue et al., 2018a] to study how each parameter affects the char-
acteristics of the hydrograph. airGRteaching is an add-on package of airGR
which allows to access to the GR models through an interface that helps to
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analyse data and model results in an immediate way and without the need
of advanced programming skills.

3.2.1 Parameter x1

From a visual sensitivity analysis on airGRteaching [Delaigue et al., 2018b][Delaigue
et al., 2018a] (see Fig.3.4 and 3.5)...

FIGURE 3.4: x1 = 250mm
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x1 affects the sim-

ulated discharges

FIGURE 3.5: x1 = 2200mm
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x1 affects the sim-

ulated discharges

For high values of x1 the plot of the simulated discharges tends to flatten:
both the high and the low flows smooth. Decreasing the parameter value,
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instead, increases the streamflow and in particular the higher flows are am-
plified.

FIGURE 3.6: Parameter x1 obtained with different objective
functions and with two calibration periods for each basin (Cal1
and Cal2 are the 1st and the 2nd half of the sample time-series)

For both the first (X0310010 - Alps in France) and the third basin (200105
- Alps in Austria), x1 increases visibly with the increasing of the tempera-
ture between Cal1 and Cal2 (Fig.3.6): a bigger x1 means reduced high flows,
which could be consistent with a warmer climate. Additionally, for the Aus-
trian basin, also the precipitation average over the two calibration periods
decreases from Cal1 to Cal2, leading to a drier condition, and probably caus-
ing a bigger gap between the x1 value for the two calibration periods.
Regarding the Brittany basin, despite the increasing temperature, the value
of the parameter concerned remains more or less the same: this could be
justified with the higher mean of rainfall that, increasing the water input in
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the catchment, could compensate in this case the probable increase of evapo-
transporation caused by the increasing T.

3.2.2 Parameter x2

When x2 is negative, the model is simulating the import of water in the un-
derground (deep aquifers or surrounding catchment), and viceversa if posi-
tive; if its value is around zero, there is not exchange of water.

From a visual sensitivity analysis on airGRteaching [Delaigue et al., 2018b][Delaigue
et al., 2018a] (see Fig.3.7 and 3.8)...

FIGURE 3.7: x2 = −4mm/day
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x2 affects the sim-

ulated discharges
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FIGURE 3.8: x2 = 4mm/day
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x2 affects the sim-

ulated discharges

Decreasing the parameter values below zero leads to smoother and down-
shifted simulated hydrographs. On the contrary, for increasing values of the
parameter above zero, the plot turns to move upward, gaining a more peaky
aspect.
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FIGURE 3.9: Parameter x2 obtained with different objective
functions and with two calibration periods for each basin (Cal1
and Cal2 are the 1st and the 2nd half of the sample time-series)

x2 decreases for the first and second basins (see Fig. 3.9): in the latter case,
though, it turns to be negative, indicating an "outflow" from the considered
watershed: a reason for this could be that the lack of snow and the higher
temperature, and therefore evapotranspiration, in Brittany do not help the
river to recharge and the global water-balance results to be an outgoing flow.

Cal1 Cal2
Qobs/Pobs 0.52 0.46

TABLE 3.1: Water yield calculated over each one of the two cal-
ibration periods (Cal1 and Cal2)

The computation of the water yield (see Tab.3.1), namely the ratio be-
tween the mean of the observed streamflow and rainfall values, can help to
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understand better what really happens. The value related to the second cal-
ibration period results indeed to be lower than the one of Cal1: from Tab.
2.10 can indeed be seen that the discharge mean values are almost the same
for the two periods, despite the fact that the the precipitations increase. This
suggests an higher evapotranspiration and a more arid climate for the sec-
ond part of the time-series, which reflects in the negative value of x2.
For the Alpine French basin instead, the decrease of x2 means a simulated hy-
drograph moved downward, therefore with lower discharges, consistently
with the increase of mean temperature between the two calibration periods.
On the other hand, for the Austrian catchment, the parameter value grows
from about 2.5 to about 3.5 [mm/day]: since the temperature increases as in
the first basin, the trend expected would be the same as that one observed in
the Basin1: the fact that the trend instead is not the same could be due to a
different compensation from the other parameters on the two basins.

3.2.3 Parameter x3

From a visual sensitivity analysis on airGRteaching [Delaigue et al., 2018b][Delaigue
et al., 2018a] (see Fig.3.10 and 3.11)...

FIGURE 3.10: x3 = 100mm
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x3 affects the sim-

ulated discharges
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FIGURE 3.11: x3 = 900mm
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x3 affects the sim-

ulated discharges

x3 affects the simulated hydrograph amplifying the peaks in case of low
values of the parameter, and flatting them in case of higher values.

The low value of x3 for the Austrian basin (see Fig. 3.12) suggests an hy-
drograph with evident peaks: this could be due, for instance, to the smaller
dimension of the river that turns it to be more sensitive to rainfall and related
flash flood events.
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FIGURE 3.12: Parameter x3 obtained with different objective
functions and with two calibration periods for each basin (Cal1
and Cal2 are the 1st and the 2nd half of the sample time-series)

3.2.4 Parameter x4

From a visual sensitivity analysis on airGRteaching [Delaigue et al., 2018b][Delaigue
et al., 2018a](see Fig.3.13 and 3.14)...
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FIGURE 3.13: x4 = 1.5day
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x4 affects the sim-

ulated discharges

FIGURE 3.14: x4 = 8.5day
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter x4 affects the sim-

ulated discharges



Chapter 3. Calibration experiments 40

FIGURE 3.15: Parameter x4 obtained with different objective
functions and with two calibration periods for each basin (Cal1
and Cal2 are the 1st and the 2nd half of the sample time-series)

This parameter affects the smoothness of the simulated hydrograph and
it slightly governs its horizontal position, i.e. delay, with respect to the ob-
served streamflows: for bigger values of x4, the plot results to be less peaky
and shifted on the right; viceversa happens for smaller values.
The x4 value results to be visibly higher in the Breton basin than in the other
two ones (see Fig. 3.15): therefore in this case the delay between input of
water in the catchment and discharge is higher.

3.2.5 Parameter c1

From a visual sensitivity analysis on airGRteaching [Delaigue et al., 2018b][Delaigue
et al., 2018a] (see Fig.3.16 and 3.17)...
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FIGURE 3.16: c1 = 0.1[−]
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter c1 affects the sim-

ulated discharges

FIGURE 3.17: c1 = 0.9[−]
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter c1 affects the sim-

ulated discharges

The c1 parameter does not have a clear physical meaning and impact on
simulations that can be identified on a visual analysis. This reflects on its
variability, which can not be explained from Fig. 3.18. According to Dr. Thirel
this parameter is difficult to interpret.
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FIGURE 3.18: Parameter c1 obtained with different objective
functions and with two calibration periods for each basin (Cal1
and Cal2 are the 1st and the 2nd half of the sample time-series)
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3.2.6 Parameter c2

FIGURE 3.19: Parameter c2 obtained with different objective
functions and with two calibration periods for each basin (Cal1
and Cal2 are the 1st and the 2nd half of the sample time-series)

The c2 value represents the degree-day melt coefficient: small values of c2

suggest a slow melting process, therefore a slow source of water for the catch-
ment. Viceversa happens for higher values of the parameter.
The considerable difference between the c2 values got for the Brittany basin
(J5412110) and those obtained for the other two basins is due to the lack of
snow in the Breton watershed. As a result, CemaNeige responds trying to
compensate the lack of water increasing the snow melt velocity and therefore
the water input to the catchment. For this reason the c2 parameter results to
be higher than in other circumstances.
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FIGURE 3.20: c2 = 1mm/◦C/day
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter c2 affects the sim-

ulated discharges

FIGURE 3.21: c2 = 1mm/◦C/day
Simulated hydrograph (in orange) of a random basin through
airGR teaching to highlight how the parameter c2 affects the sim-

ulated discharges
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Chapter 4

Snow analysis

In the chapter that follows, the snowfall over the three catchments will be
studied, mainly focusing on two main topics: the impact that the different
calibrations of CemaNeige can have on its outputs and the importance of
coupling the snow model with the hydrological ones.

4.1 Snow melt simulated with different parame-

ters

In order to show how the output of Cemaneige can change depending on the
different calibrations performed, and therefore the different set of parame-
ters used, the snow melt got for the two nival basins has been plotted in Fig.
4.1 and 4.2.
The bar-plots refer to two calibration periods (see chapter 3.1 for details)
which are differentiated using orange and teal blue: the daily snow melts
output from the snow model have been summed up to get monthly time se-
ries that, successively, have been averaged for each month over the years.
For each calibration period, the objective functions used are NSE, KGE and
KGE’.
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FIGURE 4.1: Snow melt output of CemaNeige for the basin
X0310010 (Alps in France): each bar is related to one of the cal-
ibration processes obtained combining the two calibration pe-
riods (Cal1 and Cal2 are the 1st and the 2nd half of the sample
time-series) and the three most meaningful objective functions

(NSE, KGE, KGE’)
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FIGURE 4.2: Snow melt output of CemaNeige for the basin
J5412110 (Alps in Austria): each bar is related to one of the cal-
ibration processes obtained combining the two calibration pe-
riods (Cal1 and Cal2 are the 1st and the 2nd half of the sample
time-series) and the three most meaningful objective functions

(NSE, KGE, KGE’)

From the two plots in Fig.4.1 and 4.2 it emerges that the snow melt in-
creases during the spring, with the first warmer temperatures, and then it de-
creases from May to August: probably this latter trend is due to a decrease of
solid precipitation during the previous season, which feeds the stored snow
in smaller quantity and then the snow that can actually melt decreases.

Additionally, observing the bars in June, for both the plots, it can be noted
how the calibration periods (and then the climates) affect the simulated snow
melt: between the Cal1 and Cal2, in fact, there is a difference of about 80-100
mm/day, which is a variance that should be taken into account.
Furthermore, it’s interesting to see how the objective functions in the month
of June of Fig.4.1 already impacts the snow melt. The snow melt got calibrat-
ing CemaNeige with NSE over Cal1 differs indeed from the one obtained
with KGE′ of about 20 mm/day.
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An additional observation can be done referring to the French basin on Alps
(X0310010) and comparing the snow melt values obtained calibrating the Ce-
maNeige over Cal2, with the related c2 values (plotted in Fig. 3.19): within
each month indicated in Fig.4.1, the three reddish bars have more or less the
same heights, meaning that the calibrations performed with the three differ-
ent objective functions lead to simulate similar snow melt amounts; it’s in-
teresting to see that this fact is consistent with the c2 parameter, the values of
which, in fact, almost coincide for the second calibration period (overlapping
points in Fig. 3.19 for the French Alpine basin and Cal2).

4.2 Solid precipitation simulated with different pa-

rameters

Differently from the snow melt, the solid precipitation output of the Ce-
maNeige model is not dependent on the parameters, as shown in Fig.4.3 and
4.4: in fact the solid fraction of precipitation Psol is function only of the tem-
perature and of the mean elevation of the catchment (see Fig. 2.4.b.). For
both the nival basins, in fact, for each month, the bars related to the same
calibration period have the same height, while they differ if related to Cal1
rather than Cal2.
Therefore, specifying the objective function used for the plots in the para-
graph 2.8 was not relevant.
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FIGURE 4.3: Solid precipitation output of CemaNeige for the
basin X0310010 (Alps in France): each bar is related to one of
the calibration processes obtained combining the two calibra-
tion periods (Cal1 and Cal2 are the 1st and the 2nd half of the
sample time-series) and the three most meaningful objective

functions (NSE, KGE, KGE’)



Chapter 4. Snow analysis 50

FIGURE 4.4: Solid precipitation output of CemaNeige for the
basin J5412110 (Alps in Austria): each bar is related to one of
the calibration processes obtained combining the two calibra-
tion periods (Cal1 and Cal2 are the 1st and the 2nd half of the
sample time-series) and the three most meaningful objective

functions (NSE, KGE, KGE’)

4.3 The importance of CemaNeige for nival basins

With the goal of verifying, and understanding, which one of the three catch-
ment flows need the snow model to be simulated, different plots have been
done for each one of the simulations performed with GR6J and GR4J + Ce-
maNeige. In particular simulated hydrographs have been compared with
the observed ones. The selection of GR6J and GR4J + CemaNeige has been
done in order to compare results obtained by means of models with the same
overall number of parameters but respectively without and with the snow
module.

The results obtained for the French basin X0310010 are similar to those got
for the Austrian one (200105): GR6J applied without CemaNeige gives poor
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results, with the simulated hydrographs that are far from fitting the observed
ones (see the example of the basin X0310010 in Fig.4.5 and 4.6), whereas the
presence of the CemaNeige model coupled with GR4J (Fig.4.7 and Fig.4.8)
allows to obtain higher quality simulated discharges.
Different is the behaviour of the third catchment: the quality of the results got
for the Breton watershed J5412110 using GR4J+CemaNeige is good as well.
However, with the GR6J model, the goodness-of-fit between simulated and
observed flows is comparable with the one obtained with the presence of the
snow model (see the example in Fig.4.9 and Fig.4.11 and the relative 2-years
zooms in Fig.4.10 and 4.12); therefore the presence of the CemaNeige for the
Breton catchment results to be a surplus.
Overall, solid precipitations are a fundamental process that has to be taken
into account by means of the CemaNeige module on the basin X0310010
(French basin on the Alps) and 200105 (Austrian basin), while it can be ne-
glected for the basin J5412110 since it does not add any value to the results.

The plots chosen as examples and reported in the figures 4.5 - 4.12 are ob-
tained performing the simulations with both objective function and criteria
equal to "KGE - Kling Gupta Efficiency".6
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FIGURE 4.5: Example of simulation
Basin X0310010 (Alps)

Model GR6J
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FIGURE 4.6: 1961 - 1962 zoom hydrograph
Basin X0310010 (Alps)

Model GR6J
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FIGURE 4.7: Example of simulation
Basin X0310010 (Alps)

Model GR4J+CemaNeige
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FIGURE 4.8: 1961 - 1962 zoom hydrograph
Basin X0310010 (Alps) - Model GR4J+CemaNeige
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FIGURE 4.9: Example of simulation
Basin J5412110 (Brittany)

Model GR6J
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FIGURE 4.10: 1961 - 1962 zoom hydrograph
Basin J5412110 (Brittany) - Model GR6J
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FIGURE 4.11: Example of simulation
Basin J5412110 (Brittany)
Model GR4J+CemaNeige
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FIGURE 4.12: 1961 - 1962 zoom hydrograph
Basin J5412110 (Brittany) - Model GR4J+CemaNeige

4.4 Identification of the best model for each basin

The purpose of this section is identifying the model that simulates the best
discharge over the three catchments analyzed. Due to the results got in chap-
ter 4.3, we expect to get the model GR4J+CemaNeige as the best performing
one on the two Alpine basins.

4.4.1 Analysis over the three basins

The mean of each criterion (computed over the validation periods) of the
simulations performed with the parameters obtained in all the calibration
experiments, has been calculated for all the simulations run over the same
basin and with the same model (see Fig. 4.13).

The criteria formulas listed in paragraph 1.2.4 are rather self-explicit for the
comprehension of the values in Fig.4.13. As already mentioned, the best val-
ues to aim at are:

• RMSE = 0

• NSE = 1

• KGE = 1

• KGE’ = 1
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Looking at the Fig. 4.13, it can be noticed that for the basins X0310010 (Alps in
France) and 200105 (Alps in Austria) the results obtained for GR4J+CemaNeige
are clearly better than those obtained with the other models. Criteria values
relative to GR4J, GR5J and GR6J, indeed, seem to be far from the optimal
values: this can be due to the lack of the snow precipitation and melting pro-
cesses modelled.
Regarding the Breton basin (J5412110), instead, the criteria values do not dif-
fer too much among the models: this helps demonstrating that the use of
CemaNeige can be avoided for this basin since it does not increase the qual-
ity of the results, which in fact is already high without the use of the snow
model.
All these considerations are consistent with the analysis performed in the
paragraph 4.3.
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FIGURE 4.13: Identification of the best model for each basin
analyzing the mean (computed over all the calibration experi-

ments) of the criteria values in validations

Once the CemaNeige model has been excluded as option for the analysis
of the Breton basin (J5412110), the best model among GR4J, GR5J and GR6J
had to be found (see paragraph 4.4.2).
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4.4.2 Best Model over J5412110 (French basin in Brittany)

For each observed streamflow, a Qsim has been obtained using each one of
the three models: then for each Qobs the model simulating the discharge with
the minimum ‖Qsim −Qobs‖ has been chosen as "the best one".
Then, the whole time-series of observed streamflows (with the related "best
models") has been divided in 500 different subsets of streamflows: since the
full time-series was sorted in chronological order, these subsets can be called
"chronological classes". For each one of the latters, the most frequent best
model has been identified and reported in the Fig.4.14 as a vertical grey seg-
ment.

In the plot of Fig. 4.15 instead, the discharges have been sorted with respect
to the ascending order of the observed values, 500 classes have been deter-
mined and then, for each of them, the best model is marked with a different
color. From the first plot in Fig. 4.14 it appears clear that the GR4J model is
the one that results to be the best model less frequently. Between GR5J and
GR6J the difference is not huge, even though the grey lines of the GR5J stripe
are slightly less dense for the first part of the time series (around the period
1965 - 1985).
Regarding the second plot in Fig.4.15, it can be observed that the red color is

the one that pops up less frequently, indicating that GR4J is the worst model
among the three. Additionally, we see a series of just yellow segments corre-
sponding to the lowest 2000 discharges, followed by a part in which the blue
segments prevail. Then for the discharges higher than 2mm/day, in the right-
hand side of the plot, the blue and yellow segments seem to alternate quite
uniformly. Overall, if we have to choose just one model, the one with higher
frequency of being the best one is GR6J. On the other hand, if we would have
to perform a study on a specific range of streamflow, the best way to proceed
would be to look at the corresponding portion of the plot in 4.15.
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FIGURE 4.14: Identification of the best model for the basin
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Chapter 5

Transformations versus extreme
flows

As already introduced in chapter 1.2.5, in order to better analyse the perfor-
mances of the "best" model over respectively high and low flows, transforma-
tions can be applied during the calibration process to re-scale the magnitude
of the streamflow values. Some example of transformations used in hydrol-
ogy are:

• Square root
√

Q

• Logarithm log(Q)

• Inverse 1/Q

Usually the invert and log functions are used to simulate better the low flows,
whereas applying no transformation appears to be more efficient for the anal-
ysis of high flows. The square root function, instead, is well performing for
both high and low flows.

In order to highlight the effects of the different transformations on the anal-
ysis of high and low flows, the model GR4J together with CemaNeige has
been run over the French and Austrian nival basins (X0310010 and 200105)
and calibrated over the calibration periods and objective functions already
introduced. For each parametrization, a series of simulations of the extreme
flows (see below for details) over different validation periods have been per-
formed. The four goodness-of-fit criteria (RMSE, NSE, KGE and KGE′) have
been then calculated with the different four transformations Q,

√
Q, 1/Q and

log(Q) for each simulation.
The "log" transformation coupled with KGE and KGE’ may lead to biased
evaluation of model performance, and therefore has been avoided during
the calculations [Santos et al., 2018].
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Therefore the different combinations of criteria and transformations used to
study the goodness of the simulations are:

• RMSE[Q], RMSE[
√

Q], RMSE[log(Q)], RMSE[1/Q]

• NSE[Q], NSE[
√

Q], NSE[log(Q)], NSE[1/Q]

• KGE[Q], KGE[
√

Q], KGE[1/Q]

• KGE’[Q], KGE’[
√

Q], KGE’[1/Q]

Regarding the "Low flows" I considered flow values smaller than the 20 per-
centile of the discharges, while I took values higher than the 80 percentile as
high flows.
Since the optimal values of the criteria can be either 0 or 1, the direct com-
parison between criteria values would be meaningless. Hence, after each
simulation I subtracted to each criteria value its optimum value, obtaining a
series of "deviations": the bigger was the deviation, the worse was the sim-
ulation. Then the deviations got from the criteria values computed with the
same transformation (e.g. RMSE[

√
Q], NSE[

√
Q], KGE[

√
Q] and KGE’[

√
Q])

have been grouped, and, for each group corresponding to a transformation,
the mean of the related set of deviations has been computed (see Fig.5.1):
the smaller is the deviation mean, the closer is, on average, the criteria to its
optimal value.

Mean.Dev

High Flows1

Q

Low Flows2

sqrt

0.245

log

1.770

inv

0.432

1.327

0.699

1.684

0.97

1.25

FIGURE 5.1: Means of the deviations/differences of all criteria
calculated with each transformation over high and low flows
over the two nival basins (see Appendix C for the script used)

The results obtained over the two nival basins (Fig.5.1) are consistent
with what has been written above: the mean of the deviations got for the
"High Flows" grows from "no transformation" (best performing) to the "in-
verse transformation", and viceversa for the "Low Flows". Despite that, the
result got for the "log transformation" does not perform well on the low flow,
as it was instead expected: this could be due to the fact that the average, in
this case, has been computed over a smaller number of values due to the in-
compatibility between KGE and KGE’ with "log".
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Moreover, the same kind of analysis that has been done to get the plot in
Fig.4.15 has been performed for each basin to compare the square root and
the inverse transformed simulated streamflows with the natural simulated
discharges (see from Fig.5.2 to Fig.5.7): in this case the KGE has been used as
objective function in calibration.
The following plots have been performed with an R-script provided by the
Dr. Guillaume Thirel, who will be publish it soon with a scientific article.
In particular, in Fig.5.2, 5.4 and 5.6, the best transformation (for each one of
the 500 classes defined over the observed streamflows) is shown through the
different colors.
Differently, in each one of Fig. 5.3, 5.5 and 5.7 the discharge time-series have
been divided in 200 subsets, namely classes of streamflows. For each one
of them, the simulated and observed trasformed discharges has been com-
pared for each transformation used: a transformation was chosen as the best
one when the related transformed simulated streamflow resulted to be the
closest one to the transformed observed Q. Then the three transformations
have been ranked depending on their frequency of resulting the first (1), the
second (2) or the third (3) best transformation among the three. In this case
only 200 classes have been used because an higher level of detail of the chart
would make the general trend of the transformation less clear.
The darker oranges indicate the higher frequencies of a transformation to ap-
pear with a certain rank (1st, 2nd or 3rd, depending on the row), while the
lightest orange is related to the lowest number of occurrences.

5.1 Transformation over X0310010 (French basin on

Alps)

From the chart in Fig.5.2 we can see immediately the clear difference between
the portion on the left hand side of the chart, which is mainly blue (inverse
transformation) and the right one in red (no transformation): the square root
function (in yellow), as best transformation, results to be distributed within
the whole range of streamflows. Hence, the behaviour of the three transfor-
mations, in this case, result to be consistent with the expectations.
The only peculiarity is that the yellow segments unexpectedly appear with a
denser concentration for extremes high flows. The analysis of this behaviour
would be interesting to be deepened, but despite that it will not be performed
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in this circumstance: in fact, in order to study this particular trend of sqrt I
would need a wider range of basins to be studied and that would deviate my
study from its initial goal.
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FIGURE 5.2: Identification of the best transformation for the
basin X0310010 among Q (no transformation), square root func-
tion and inverse function (over each one of the 500 classes of
sorted - observed - streamflows). The x-axes of the plot indi-
cates the number of times that a certain discharge is not ex-

ceeded by the other ones of the sample.
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FIGURE 5.3: Rank of the transformations Q (no transforma-
tion), square root function and inverse function for the basin
X0310010, over each one of the 200 classes of sorted - observed
- streamflows. The x-axes of the plot indicates the number of
times that a certain discharge is not exceeded by the other ones

of the sample.

The trend of the transformations resulting in the chart of Fig. 5.3 confirms
the one just observed in Fig.5.2: the best transformation (dark orange in line
(1)) is inv for low flow, Q for high flow and sqrt for extreme high flows.
The sqrt portion of the chart is of the darkest orange for almost the whole line
(2) and the lightest one for almost the line (3): this transformation is never
the worst one, suggesting that sqrt is well performing for a wider range of
streamflows, it seems a good compromise between high and low flows.
The shades of orange in lines (3) of Q and inv are opposite to the relative lines
(1), showing that Q is not good to analyse low flows and vice versa for inv.

5.2 Transformation over J5412110 (French basin in

Brittany)

An analysis similar to the one just done for the Alpine catchment, can be
done for the Breton basin (Fig.5.4). The right hand side part of the chart is
prevailed again by the color red, indicating the lack of transformation as the
best way to approach the study of high flows. inv transformation results to be
the best one mainly for the extreme low flows, while the yellow segments of
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the root square function appear homogeneously distributed over the whole
range of stream flows: differently form the previous case, the sqrt seems to
improve its performances for the low flows, where the inv used to rule for
the Alpine basin (X0310010). The presence of inv transformation as the best
one pop up just for extremes low flows: this could be due to the fact that the
breton basin has a different regime with respect to the French Alpine one,
without presence of snow. Again, in order to justify properly this fact one
would need a larger set of catchments to be compared. However, one more
time the general trend is consistent with the expectations.
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FIGURE 5.4: Identification of the best transformation for the
basin J5412110 among Q (no transformation), square root func-
tion and inverse function (over each one of the 500 classes of
sorted - observed - streamflows). The x-axes of the plot indi-
cates the number of times that a certain discharge is not ex-

ceeded by the other ones of the sample.

The Fig. 5.5 confirms what just said, and helps highlighting the fact that
the sqrt transformation is never the worst one, so it allows to perform anal-
ysis that concern a wide ranges of streamflows. The dark orange that im-
mediately jumps out looking at the figure is the one on the line (3) of the
inv transformation, pointing out the bad results got with it for almost all the
discharges.
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FIGURE 5.5: Rank of the transformations Q (no transforma-
tion), square root function and inverse function for the basin
J5412110, over each one of the 200 classes of sorted - observed
- streamflows. The x-axes of the plot indicates the number of
times that a certain discharge is not exceeded by the other ones

of the sample.

5.3 Transformation over 200105 (Austrian basin)

For the Austrian basin the comments that can be done are similar to those
done for the previous two catchments.
However, in this case the pattern come out more clearly from the second
chart of Fig.5.7 instead of Fig.5.6. From the latter it can be observed that the
inv transformation works better on low flows, while the color red for Q and
yellow for sqrt are mixed for intermediate and high flows. In Fig.5.7, it can
be seen that for low flows, Q is the worst transformation (dark orange in line
(3)), inv is the best one and sqrt is in the second place. Vice versa happens for
the high flows. sqrt remains the second best model over almost all the stream
flows.
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FIGURE 5.6: Identification of the best transformation for the
basin 200105 among Q (no transformation), square root function
and inverse function (over each one of the 500 classes of sorted
- observed - streamflows). The x-axes of the plot indicates the
number of times that a certain discharge is not exceeded by the

other ones of the sample.
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FIGURE 5.7: Rank of the transformations Q (no transforma-
tion), square root function and inverse function for the basin
200105, over each one of the 200 classes of sorted - observed
- streamflows. The x-axes of the plot indicates the number of
times that a certain discharge is not exceeded by the other ones

of the sample.
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Chapter 6

Dam module analysis

6.1 Introduction: artificial reservoirs and dams

It is well known that reservoirs, natural or not, can be used for different pur-
poses, such as drinking water supply, irrigation, production of hydroelectric
power, flood control, low-flow enhancement and recreation. If we talk about
an artificial reservoir we do not have to forget that they are essentially de-
signed to modify the natural hydrologic processes [Payan et al., 2008].
Some of the impacts that a barrage can have are:

• Fragmentation of river ecosystems

• Reservoir sedimentation

• Erosion of riverbed, river shores, coasts

• Evapotranspiration, infiltration and water transfer at the reservoir level

• Water temperature

Forecasting and quantifying all the effects of a man-made regulating struc-
ture downstream of a water course, result to be rather complex: in order to
take into account the presence of a dam in a rainfall-runoff model, particular
modules are needed. Due to the fact that a barrage is a punctual work in
a river catchment, the most intuitive way to proceed would be using a dis-
tributed model and suitably modelling the sub-catchment corresponding to
the dam in order to take into account its behaviour: running lumped models
seems to be incompatible with managing the presence of a local reservoir be-
cause, as in every conceptual model, the model components do not represent
directly physical processes, so it appears difficult to understand their corre-
spondent role in the real world. However Payan et al. [2008] showed that
it’s possible to use lumped models if observed values of the variation of wa-
ter volume stored in the reservoir are considered as additional input to the
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model: thus, the model structure remains unchanged and no new parameter
or function has to be considered. This solution does not take into account
the precise location of the dam within the catchment: nevertheless, it ends
up improving the simulation of the downstream regulated discharge, and
additionally it results to be a robust solution, namely applicable to different
basins conditions [Payan et al., 2008].

6.2 Description of the module

The dam module is taken into account in the GR models considering an ad-
ditional storage between the Production store and the Routing store (see Fig.
6.1). It has been originally designed for GR4J [Payan et al., 2008], but since
the structure of the latter is similar to the one of GR5J then the presence of
the barrage could be simulated also with this last model. Differently happens
for GR6J, which has a structure different from GR4J and therefore its use to-
gether with the dam module has to be avoided.
The content of the additional store corresponds to the total stored volume
observed in the reservoir and, as for the other stores, is expressed in mm
(volume of the content divided by the watershed area, exactly as all the other
volumetric measures in the model).

which was shown by Oudin et al. [2006] to be a good
compromise between several alternative criteria:

NSrq ¼ 1ÿ
P

j

ffiffiffiffiffiffiffiffiffiffiffi

Qobs;j

p ÿ ffiffiffiffiffiffiffiffiffiffiffi

Qsim;j

p

� �2

P

j

ffiffiffiffiffiffiffiffiffiffiffi

Qobs;j

p ÿ
ffiffiffiffiffiffiffiffiffi

Qobs

p

� �2
ð1Þ

where Qobs,j is the measured flow at day j, Qsim,j the
simulated flow at day j and

ffiffiffiffiffiffiffiffiffi

Qobs

p
the mean of transformed

observed flows over the test period.
[59] To assess model performance in control mode, we

used two other criteria: the original Nash-Sutcliffe criterion
calculated on flow values (NSq) and the Nash-Sutcliffe
criterion calculated on log-transformed flow values (NSlq).
These two criteria are complementary and put greater
emphasis on the simulation of high flows and low flows,
respectively.
[60] As a reference model, we used the original GR4J

model, ignoring the information related to the artificial
reservoirs.

5.2. Results of Model Application

[61] The results are illustrated in Figure 4, which com-
pares, in control mode on the whole set of watersheds, the
performance obtained when exploiting and ignoring the
volume variations. It can be seen that the improvement
achieved by the use of reservoir storage information
is significant. The mean model performance rises from
0.679 (NSq) and 0.682 (NSlq) when ignoring storage
information to 0.707 and 0.765, respectively, when using
this information. The improvements are more significant on
low flow simulation.
[62] These results show to what extent artificial water

storages can be accounted for in lumped rainfall-runoff
models. The use of the simple information of artificially
stored water volumes is sufficient to make significant
improvements in the simulation of downstream flows.

5.3. Limits and Possible Extension of the Proposed
Approach

[63] Despite these interesting results, it can be seen in
Figure 4 that in some cases the performance obtained when
exploiting the volume variations is slightly lower than that
obtained without the volume variations. In a few cases, this
drop in model performance can even be fairly substantial,
because the proposed model version is not optimal in all
cases, and there may be other modeling options more
suitable for some watersheds. Among all the versions we
tested, some achieved better results than the proposed
version in some watersheds. A modeling option that per-
formed at least as well as the initial model (ignoring the
water level information) could always be found. A com-
posite model that would use all the versions tested would
reach 0.728 (NSq) and 0.787 (NSlq) as mean performance
on our watershed set, which is a bit more efficient than the
proposed version.
[64] This composite model could be used effectively only

if one could determine in advance (from physical watershed
descriptors and reservoir characteristics) which solution
should be used on each watershed. However, we found no
clear relationship between the characteristics of the reser-
voirs existing on the watershed and the way the new inputs
should be introduced into the model. For example, surpris-
ingly, no significant impact of the position of reservoirs
within the watershed, the reservoir content seasonal vari-
ability or the relative area contributing to the reservoirs
could be found on the way the new inputs should be
introduced into the model. Therefore these aspects are not
accounted for explicitly in the modeling approach. So it was
not possible to determine a priori from watershed and
reservoir descriptors which solution was the most appropri-
ate to a specific watershed.
[65] Since the attempts to use more sophisticated model

versions did not provide significant improvements, we

Figure 3. How to account for the artificial reservoir volume variations (V).

W03420 PAYAN ET AL.: MAN-MADE RESERVOIRS IN A RUNOFF MODEL

7 of 11

W03420

FIGURE 6.1: How to account for an artificial reservoir volume
variation (V) - structure of a generic GR model combined with

the "dam module" [Payan et al., 2008]
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All the processes occurring within the reservoir (e.g. infiltration, evapo-
ration, operations...) are not taken into account singularly in the model, but
they are summed up dealing with the volume variation only. The behaviour
of the store is totally described through ∆V observations, without any need
of parametrization: this is due to the fact that the changes in the water height
in the storage are mainly results of management actions and are not directly
related to natural processes. Therefore no additional parameters has to be
calibrated to take into account the presence of the dam: just the volume vari-
ations have to be taken into account as new input for the model.

The part that follows describes more in detail how the model works.
Assuming that the volume in our store is Vi at the i-time step and Vi+1 at the
(i+1)-time step, it results clear that ∆V = |Vi+1 − Vi| is the quantity of wa-
ter exchanged between the lumped representation of the artificial reservoir
and the lumped representation of the basin (rainfall-runoff structure) [Payan
et al., 2008]. It is not obvious a priori which part of the rainfall-runoff model
is affected by this volume change: in [Payan, 2007] and [Payan et al., 2008]
different model options are tested to finally show that, on average, the pres-
ence of the dam impacts mainly the Routing and production stores, in the way
that is explained below.
If ∆V > 0, then the water level in the reservoir has increased and it means
that the water has flown from the natural system towards the reservoir: in
this case the ∆V is subtracted from the Routing store. Vice versa, when the
stored volume in the reservoir decreases, the ∆V < 0 is added to the Produc-
tion store. This justifies the location in Fig. 6.1 of the storage representing the
artificial reservoir between the two stores just mentioned.

The following chapter will analyse how the the presence of a barrage could
affect the streamflow in a watershed.
Due to the fact that among the three main basins available for my study there
was not any catchment with an actual reservoir, the results got testing the
module on one of them resulted to be pointless, and therefore the outcomes
of this latter analyses will not be included in this report. Despite that, in
order to highlight the role and the impact that a barrage can have on a water-
shed, I picked a fourth basin with a real barrage (Ill river basin - A1320310):
I compared few years of observed streamflows at its closure section with the
relative water levels measured in its reservoir.
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6.3 Analysis of input data: observed discharges and

volume data in a real case of a basin with a bar-

rage (A1320310)

The following paragraph will not concern the use of the "dam module" but it
will just focus on the study of its main input, namely the observed discharges
at the closure section and the observed volume variation in the reservoir of
the catchment FR_A1320310.
In particular, the comparison of these quantities will allow to underline the
mitigation role that the reservoir has on high and low flows: as explained be-
low, these two different effects emerge from the analysis performed on data
available at two different time-scales.
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FIGURE 6.2: Interannual variation of volume in the reservoir of
basin FR_A1320310

First of all, the periods during which the reservoir collects or releases wa-
ter can be easily distinguished looking at Fig.6.2. From March to June the ∆V
results to be mainly positive, indicating that the water is, on average, with-
drawn for the natural environment and gathered in the reservoir; vice versa
happens in the period between the beginning of July and the end of October,
in which the water balance of the reservoir is outgoing, hence with the water
flowing toward the natural system. For the months November-February in-
stead, the trend is not clearly definable, with the interannual ∆V oscillating
between values above and below zero.
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Interannual variation of volume 
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FIGURE 6.3: Interannual observed volume in the reservoir
(graph in red) and streamflow at the closure section (graph in

black on the bottom) of basin FR_A1320310

Obviously the pattern of Fig.6.2 reflects directly on the volume values
plotted in Fig.6.3, with V decreasing in case of negative ∆V and and increas-
ing otherwise.
Comparing the streamflow and the volume regime in Fig.6.3, some consider-
ations can be made: the volume results to increase (reservoir collects water)
when the Q decreases during the winter period, suggesting that the inflow
to the reservoir is diverted to create a storage. Moreover, V decreases while
very low and almost constant discharges occur during the summer-autumn
months. The speed with which the volume increases is a bit lower than the
one with which it decreases.
This pattern makes clear the mitigation target of the dam, which indeed al-
lows to collect water in case of higher flows and to release it in case of lower
flows.
However, the faster dropping of the reservoir volume in correspondence of
an almost constant out-going discharge indicates a period in which the in-
going flow of the reservoir decreases drastically.
Thus, with the analysis of the seasonal regime of volumes and discharges, the
droughts counteracting role of the reservoir emerges more clearly: between
June and October it allows to have at least a low flow, mitigating therefore
the dry season.

On the other hand, analysing the full daily time-series of volumes and dis-
charges instead of their regimes, will allow to highlight other aspects of the
storage behaviour: the higher variability of data present in this type of study
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allows the peaks of high flows to appear distinctly and therefore the delin-
eation of the effects of the reservoir on high flows results to be straightfor-
ward.
Thus, the plots in Fig.6.4 and 6.5 will target to show the impact of the reser-
voir on floods: in particular Fig.6.5 shows the relation between the variation
of observed streamflows and the change in the reservoir volume during spe-
cific events.
In particular, by way of example, an event is circled in red in Fig.6.4 and re-
ported zoomed in Fig.6.5: in the latter plot, at the beginning of November,
the variation of volume in the reservoir increases sharply in correspondence
of the rapid increase of Qobs. This suggests that the probable flood inflow
coming to the reservoir is still released as high flow but it is also mitigated by
the presence of the dam, which, in fact allows part of the water to be stored,
and then released just after the Qobs peak, decreasing the hypothetical dan-
gerous character of the discharge. Going on with the research and producing
new zoomed charts, several similar events can be located over the full time
series.
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FIGURE 6.4: 2-years zoom of observed discharges affected by
the dam and variation of volumes in the reservoir present in

basin FR_A1320310

Overall, the mitigating behaviour of the reservoir on low and high flows
appears clear. As expected, the smoothed effects of low flows come out more
clearly observing the long and seasonal time-series, while the high-flow ones
can be easily observed focusing more on the single events.
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Chapter 7

Conclusions

The analysis, subject of this report, targets my attention on different aspects
of hydrological modelling, which, overall, result to be connected all together.

As first step, before running the model, examining the hydro-climatic regime
of the watershed is a fundamental step, together with the inspection of ni-
val characteristic of the basin: indeed, it needs to be done in order to decide
whether the snow accounting model CemaNeige has to be applied or not.

How to compare the different basins, models, objective functions and cal-
ibration periods, has been the core of the study: in particular, the way all
these aspects influence the model parameters, and therefore the simulated
hydrograph, was an important part of the study that helped me to under-
stand better the model behaviour.
A secondary analysis has been done on the different components of the KGE
goodness-of-fit criteria: indeed, they can be studied in validation to obtain
information on different aspects of the simulated hydrographs.

Moreover, this report studies the importance of the snow for a river catch-
ment, and therefore the necessity of combining an hydrological model with
a snow accounting model as CemaNeige: I performed some tests in order
to understand how the lack of the snow module, and of the simulated snow
melt, would impact the simulated discharges both on nival and pluvial basins.
Particular attention has been put also to find out how the different calibra-
tion periods and objective functions affect the outputs of the just mentioned
snow accounting model. Overall, CemaNeige resulted to be essential for the
nival basins while it does not improve the simulation for the pluvial ones.

Furthermore, the improvement that using a transformation of the stream-
flow values can bring to the analysis of extremes flows have been tackled:
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the natural Q, the sqrt and the inv transformations have been tested over the
three basins; the trend that emerges in general is the good performance of Q
for high flows, of inv(Q) for low flows and of sqrt(Q) for a wider range of dis-
charges. However, there are slight differences from a basin to another, and
this could be due to the different climates of the areas.

The last topic analysed was the effect that the presence of a dam can have on
the catchment behaviour: a dam module has been developed by the IRSTEA
research center to simulated the presence of a barrage in a watershed. Un-
fortunately, among the cases study available for my study, there were not
catchments including reservoirs so I did not have the chance to test the mod-
ule; although, in order to understand how the mitigating role of a barrage
can be studied, few years of observed streamflows and water levels in the
reservoir of a fourth basin have been compared in order to highlight the in-
fluence that an actual dam can have.

All these analyses allowed me to gain confidence with different aspects of
hydrological modelling (additionally to improve my coding skills). The sets
of the models tested and of the basins studied were limited, but they gave
me the chance to get acquainted with a branch of water engineering that was
unknown to me: thanks to this thesis work I will be able to face similar topics
and issues with more flexibility and an higher level of critical thinking.
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Appendix A

Script used for the calibration
experiments
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Appendix B

Dataframe of results
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Appendix C

Script used for the transformations
analysis



C:\Data\chiara\03_CODES\Script_3basin_Analyses2.spin.Rmd jeudi 24 janvier 2019 15:00

library(airGR)
library(airGRteaching)

## DATA.FRAME OF OBSERVED DATA 
# X0310010_BV
    Input_X0310010 <- read.table(file = "C:/Data/ch iara/02_DATA/French_Data/X0310010_BV.txt",
                                 header = TRUE, sep  = ";", skip = 50)
    Input_X0310010$Q[Input_X0310010$Q < 0] <- NA; I nput_X0310010$Ptot[Input_X0310010$Ptot < 

0] <- NA
    A_X0310010 <- 2282.76
    Input_X0310010$Qmm <- 0.0864*(Input_X0310010$Q) /A_X0310010
    Input_X0310010$Time <- as.POSIXct(as.character( Input_X0310010$Date), format = "%Y%m%d", 

tz = "UTC")
    Obs_X0310010 <- Input_X0310010[, c("Time", "Pto t", "ETP_O", "Qmm", "Temp")]
# J5412110_BV
    Input_J5412110 <- read.table(file = "C:/Data/ch iara/02_DATA/French_Data/J5412110_BV.txt",
                                 header = TRUE, sep  = ";", skip = 50)
    Input_J5412110$Q[Input_J5412110$Q < 0] <- NA; I nput_J5412110$Ptot[Input_J5412110$Ptot < 

0] <- NA
    A_J5412110 <- 675.64
    Input_J5412110$Qmm <- 0.0864*(Input_J5412110$Q) /A_J5412110
    Input_J5412110$Time <- as.POSIXct(as.character( Input_J5412110$Date), format = "%Y%m%d", 

tz = "UTC")
    Obs_J5412110 <- Input_J5412110[, c("Time", "Pto t", "ETP_O", "Qmm", "Temp")]
# 200105
    Input_200105_1 <- read.table(file = 

"C:/Data/chiara/02_DATA/Austrian_Data/BaciniTest/ob s_200105.txt",
                                 header = FALSE, se p = "\t")
    Input_200105_2 <- read.table(file = 

"C:/Data/chiara/02_DATA/Austrian_Data/BaciniTest/in put_200105.txt",
                                 header = TRUE, sep  = "\t")
    #Input_200105_2 <- Input_200105_2[[1]] %in% seq (from = as.POSIXct("19764101-01"), to = 

as.POSIXct("2008-12-31"), by = 1)
    Input_200105_2 <- Input_200105_2[1:12054,]
    Input_200105_3 <- read.table(file = 

"C:/Data/chiara/02_DATA/Austrian_Data/BaciniTest/Ar eaDist_200105.txt",
                                 header = TRUE, sep  = " ")

    Input_200105_1$V2[Input_200105_1$V2 < 0] <- NA
    Input_200105_2[Input_200105_2 < -99] <- NA #War ning
    A_200105 <- 95.50   #Input_200105$Qmm <- 0.0864 *(Input_200105$Q)/A_200105
    Input_200105_1$Time <- as.POSIXct(as.character( Input_200105_1[,1]), format = "%Y-%m-%d", 

tz = "UTC")
    T <- apply(Input_200105_2[,21:39], 1, function( x, w) weighted.mean(x, Input_200105_3[,1]))
    P <- apply(Input_200105_2[,2:20], 1, function(x , w) weighted.mean(x, Input_200105_3[,1]))
    EP <- apply(Input_200105_2[,40:58], 1, function (x, w) weighted.mean(x, 

Input_200105_3[,1]))

    Obs_200105 <- data.frame(col1 = Input_200105_1$ Time,
                             col2 = P,
                             col3 = EP,
                             col4 = Input_200105_1$ V2,
                             col5 = T)
    colnames(Obs_200105) <-  c("Time", "Ptot", "ETP _O", "Qmm", "Temp")

# Input CemaNeige
    Input_Neige_Fr <- read.table(file = 

"C:/Data/chiara/02_DATA/French_Data/_ListeBV_Quanti les_altitude.txt",
               header = TRUE, sep = "")
    Input_Hypso_Au <- read.table(file = "C:/Data/ch iara/02_DATA/Austrian_Data/HypsoZ.txt",
                                 header = TRUE, sep  = "\t")
    Input_Zin_Au <- read.table(file = "C:/Data/chia ra/02_DATA/Austrian_Data/Zin.txt",
                                 header = TRUE, sep  = "\t")
    Input_CN <- data.frame(matrix(nrow = 102, ncol = 3))
    rownames(Input_CN) <- c(colnames(Input_Neige_Fr [,5:106]))
    colnames(Input_CN) <- c("X0310010", "J5412110",  "200105")
    Input_CN["Zmean", ] <- c(Input_Neige_Fr$Zmean, Input_Zin_Au[1,1])
    Input_CN[2:102, "X0310010"] <- t(Input_Neige_Fr [1, 6:106])
    Input_CN[2:102, "J5412110"] <- t(Input_Neige_Fr [2, 6:106])
    Input_CN[2:102, "200105"] <- t(Input_Hypso_Au[" 200105", 1:101])
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# Vectors for the loop
    BASIN <- list(Obs_X0310010, Obs_J5412110, Obs_2 00105)
    BASIN_char <- c("Obs_X0310010", "Obs_J5412110",  "Obs_200105")
    MOD <- c(RunModel_GR4J, RunModel_GR5J, RunModel _GR6J, RunModel_CemaNeigeGR4J)
    MOD_char <- c("RunModel_GR4J", "RunModel_GR5J",  "RunModel_GR6J", "RunModel_CemaNeigeGR4J")
    CRIT <- c(ErrorCrit_RMSE, ErrorCrit_NSE, ErrorC rit_KGE, ErrorCrit_KGE2)
    CRIT_char <- c("ErrorCrit_RMSE", "ErrorCrit_NSE ", "ErrorCrit_KGE", "ErrorCrit_KGE2")

    Ind_Run_AU <- list((seq(which(format(Obs_200105 $Time, format = "%Y-%m-%d") == 
"1978-01-01"),

                      which(format(Obs_200105$Time,  format = "%Y-%m-%d") == "1993-12-31"))),
                    (seq(which(format(Obs_200105$Ti me, format = "%Y-%m-%d") == "1994-01-01"),
                      which(format(Obs_200105$Time,  format = "%Y-%m-%d") == "2008-12-31"))))
    Ind_Run_FR <- list((seq(which(format(Obs_X03100 10$Time, format = "%Y-%m-%d") == 

"1961-01-01"),
                            which(format(Obs_X03100 10$Time, format = "%Y-%m-%d") == 

"1985-12-31"))),
                      (seq(which(format(Obs_X031001 0$Time, format = "%Y-%m-%d") == 

"1986-01-01"),
                          which(format(Obs_X0310010 $Time, format = "%Y-%m-%d") == 

"2010-07-31"))))
    Per_Cal_FR <- c("1961-1985", "1986-2010")
    Per_Cal_AU <- c("1978-1993", "1994-2008")   

# To store results
result_row_hl <- vector(length = 8)
results_df_hl <- as.data.frame(matrix(ncol = 8))
colnames(results_df_hl) = c("Basin", "Model", "Per_ Cal", "OF_Name", "Crit_Name", "Transf", 
"Crit_Val", "Deviation")

## LOOPS
for (b in 1:2) {
 x = 4 #for (x in seq_along(MOD)) {
  for (p in seq_along(Per_Cal_FR)){
    for (i in seq_along(CRIT)) {

        # define calibration period
        if (b == 3) {
          Ind_Run_Cal <- Ind_Run_AU[[p]]
          Per_Cal <- Per_Cal_AU[[p]]
          WuP <- 1:730
        } else  {
          Ind_Run_Cal <- Ind_Run_FR[[p]]
          Per_Cal <- Per_Cal_FR[[p]]
          WuP <- 1:(as.numeric(difftime(strptime("1 960-12-31", format = "%Y-%m-%d"),
                                        strptime(Ob s_X0310010[1, "Time"], format = 

"%Y-%m-%d"),units="days")))
        }

        # define inputs model and run options
        InputsModel <- CreateInputsModel(FUN_MOD = MOD[[x]], DatesR = BASIN[[b]]$Time,
                                         Precip = B ASIN[[b]]$Ptot, PotEvap = BASIN[[b]]$ETP_O,
                                         TempMean =  BASIN[[b]]$Temp, ZInputs = 

Input_CN["Zmean", b],
                                         HypsoData = Input_CN[2:102, b], NLayers = 5)

        RunOptions_Cal <- CreateRunOptions(FUN_MOD = MOD[[x]], InputsModel = InputsModel,
                                           IndPerio d_WarmUp = WuP, IndPeriod_Run = 

Ind_Run_Cal) #warning solid precipitation
        # define warm period here in CreateRunOptio ns!!! warmup period if cycle

        ## CALIBRATION
        InputsCrit <- CreateInputsCrit(FUN_CRIT = C RIT[[i]], InputsModel = InputsModel,
                                       RunOptions =  RunOptions_Cal, Qobs = 

BASIN[[b]]$Qmm[Ind_Run_Cal])

        # "", "sqrt", "log", "inv", "sort"
        CalibOptions <- CreateCalibOptions(FUN_MOD = MOD[[x]], FUN_CALIB = 

Calibration_Michel, FUN_TRANSFO = NULL)
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        OutputsCalib <- Calibration_Michel(InputsMo del = InputsModel, RunOptions = 
RunOptions_Cal,

                                           InputsCr it = InputsCrit, CalibOptions = 
CalibOptions,

                                           FUN_MOD = MOD[[x]], FUN_CRIT = CRIT[[i]], 
FUN_TRANSFO = NULL)

        ## SIMULATION
          for (ii in seq_along(CRIT)) {

            if (CRIT_char[[ii]] %in% c("ErrorCrit_K GE", "ErrorCrit_KGE2")) {
              tr <-  c("", "sqrt", "inv")
            } else {
              tr <-  c("", "sqrt", "log", "inv")
            }

            for (tt in seq_along(tr)) {

              if (b == 3) {
              Ind_Run_Val <- seq(which(format(Obs_X 0310010$Time, format = "%Y-%m-%d") == 

"1976-01-01"),
                                which(format(Obs_X0 310010$Time, format = "%Y-%m-%d") == 

"2008-12-31"))
              } else  {
              Ind_Run_Val <- seq(which(format(Obs_X 0310010$Time, format = "%Y-%m-%d") == 

"1961-01-01"),
                                 which(format(Obs_X 0310010$Time, format = "%Y-%m-%d") == 

"2009-06-29"))
              }

              RunOptions_Val <- CreateRunOptions(FU N_MOD = MOD[[x]], InputsModel = 
InputsModel,

                                                 In dPeriod_WarmUp = WuP, IndPeriod_Run = 
Ind_Run_Val)

              Param <- OutputsCalib$`ParamFinalR`
              OutputsModel <- MOD[[x]](InputsModel = InputsModel,
                                       RunOptions =  RunOptions_Val, Param = Param)

              q20 <- quantile(BASIN[[b]]$Qmm, probs  = 0.2, na.rm = TRUE)
              q80 <- quantile(BASIN[[b]]$Qmm, probs  = 0.8, na.rm = TRUE)

              #Low flows
              boolcrit <- BASIN[[b]]$Qmm < q20 & !i s.na(BASIN[[b]]$Qmm)
              #High flows
              #boolcrit <- BASIN[[b]]$Qmm > q80 & ! is.na(BASIN[[b]]$Qmm)

              InputsCrit <- CreateInputsCrit(FUN_CR IT = CRIT[[ii]], InputsModel = InputsModel,
                                             RunOpt ions = RunOptions_Val, Qobs = 

BASIN[[b]]$Qmm[Ind_Run_Val], 
                                             transf o = tr[[tt]], BoolCrit = 

boolcrit[Ind_Run_Val])
              OutputsCrit <- CRIT[[ii]](InputsCrit = InputsCrit, OutputsModel = OutputsModel)

              diffe <- abs(OutputsCrit$CritVal - Ou tputsCrit$CritBestValue)
              result_row_hl <- c(BASIN_char[[b]], M OD_char[[x]], Per_Cal, CRIT_char[[i]], 
                                 OutputsCrit$CritNa me, tr[[tt]], OutputsCrit$CritVal, diffe)
              results_df_hl <- rbind(results_df_hl,  result_row_hl)
              results_df_hl <- results_df_hl[!is.na (results_df_hl),]
            }
          }
      }
  }
}

write.csv(results_df_hl, "Criteria_Values_HighFlows ")

# RESULTS
results_df_hf <- read.csv(file = "C:/Data/chiara/03 _CODES/Criteria_Values_HighFlows")
# OR
results_df_lf <- read.csv(file = "C:/Data/chiara/03 _CODES/Criteria_Values_LowFlows")

-3-
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tr <-  c("", "sqrt", "log", "inv") 
mean_tr <- as.data.frame(matrix(ncol = 5))
colnames(mean_tr) <-  c("Mean.Dev", "Q", "sqrt", "l og", "inv")
mean_tr[1:2,1] <- c("High Flows", "Low Flows")

for (tt in seq_along(tr)){
  mean_tr[1, tt+1] <-  mean(as.numeric(results_df_h f[results_df_hf$Transf == tr[[tt]], 

colnames(results_df_hf) == "Deviation"]), 
                          na.rm = TRUE)
  mean_tr[2, tt+1] <-  mean(as.numeric(results_df_l f[results_df_lf$Transf == tr[[tt]], 

colnames(results_df_lf) == "Deviation"]), 
                         na.rm = TRUE)
}

library(gridExtra)
pdf("mean_tr.pdf", height=1.5, width=4)
grid.table(mean_tr)
dev.off()

# plot(obse, type = "l")
# lines(simu, type = "l", col = "orange")

-4-
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Appendix D

Script used for the dam module
analysis



rm(list = ls())
library(airGR)
library(RColorBrewer)

crit = "KGE"

basin_name <- "FR_A1320310"
name_crit = paste("ErrorCrit_", crit, sep = "")
my_crit = get(paste("ErrorCrit_", crit, sep = ""))
start_date <- "1958-08-01"
end_date <- "2016-07-31"

BasinObs <- read.table(file = 
"C:/Data/chiara/03_CODES/Dam_analysis/donnees_Morgane/FR_A1320310.txt",
 sep = ";", header = TRUE)
BasinObs <- as.data.frame(BasinObs)
names(BasinObs) = c("Date", "Q", "Qmm", "P", "E", "V", "Vmm", "DVmm", 
"CodeQ")
BasinObs$Qmm[BasinObs$Qmm < 0] <- NA
BasinObs$P[BasinObs$P < 0] <- NA
BasinObs$E[BasinObs$E < 0] <- NA
BasinObs$Date <- as.POSIXct(BasinObs$Date, format = "%Y-%m-%d", tz 
="UTC")
BasinObs <- BasinObs[-c(33970, 34702, 35068, 35434, 36166, 36532, 
36898), ]
#BasinObs <- BasinObs[!is.na(BasinObs$P) & !is.na(BasinObs$E), ]
BasinObs <- BasinObs[28856:31332,]

jourJulien <- paste(substr(BasinObs$Date, 6, 7), substr(BasinObs$Date, 
9, 10), sep = "")
DVmm_interannuel <- aggregate(BasinObs$DVmm, by = list(jourJulien), 
FUN = mean, na.rm = TRUE)$x
Vmm_interannuel <- aggregate(BasinObs$Vmm, by = list(jourJulien), FUN 
= mean, na.rm = TRUE)$x
P_interannuel <- aggregate(BasinObs$P, by = list(jourJulien), FUN = 
mean, na.rm = TRUE)$x
E_interannuel <- aggregate(BasinObs$E, by = list(jourJulien), FUN = 
mean, na.rm = TRUE)$x
Qobs_interannuel <- aggregate(BasinObs$Qmm, by = list(jourJulien), FUN 
= mean, na.rm = TRUE)$x
month <- paste(substr(aggregate(BasinObs$P, by = list(jourJulien), FUN 
= mean, na.rm = TRUE)$Group.1, 1, 2), sep = "")
P_month  <- aggregate(P_interannuel, by = list(month), FUN = mean, 
na.rm = TRUE)$x

dates1 <- seq(which(format(BasinObs$Date, format = "%Y-%m-%d")=="1994-
01-01"),
                which(format(BasinObs$Date, format = "%Y-%m-
%d")=="1996-12-31"))
dates2 <- seq(which(format(BasinObs$Date, format = "%Y-%m-%d")=="1997-
01-01"),
                which(format(BasinObs$Date, format = "%Y-%m-
%d")=="1998-12-31"))
dates3 <- seq(which(format(BasinObs$Date, format = "%Y-%m-%d")=="1999-



01-01"),
                which(format(BasinObs$Date, format = "%Y-%m-
%d")=="2000-10-12"))
dates <- c(dates1, dates2, dates3)

pdf("plots_V&Qobs.pdf")

##### PLOT TOT ######
par(oma = c(1,1,1,3), xpd=TRUE)
ylim = c(min(BasinObs$Qmm, BasinObs$DVmm, na.rm = TRUE)-3, 
         max(BasinObs$Qmm, BasinObs$DVmm, na.rm = TRUE))
plot(BasinObs$Date, BasinObs$Qmm,
     type = "l", ylim = ylim, 
     main = paste("Observed discharges and volume variation \n in 
reservoir of basin", basin_name),
     ylab = "Qobs [mm/day]", xlab = "Time [years]")
par(new = TRUE)
plot(BasinObs$Date, BasinObs$DVmm,
     type = "l", col = "blue", ylim = ylim*c(0.2, 0.2), xaxt = "n", 
yaxt = "n", ylab = "", xlab = "")
axis(side = 4, col.axis = "blue")
mtext(paste("Delta_V [mm/day]"), side = 4, line = 3, col = "blue")
legend("top", legend = c("Qobs", "Delta_V"), 
       col = c("black", "blue"), lty = c(1, 1), lwd = c(2, 2), cex = 
0.8)

##### PLOT period 1 ######
par(oma = c(1,1,1,3), xpd=TRUE)
ylim = c(min(BasinObs$Qmm[dates1], BasinObs$DVmm[dates1], na.rm = 
TRUE)-2.5, 
         max(BasinObs$Qmm[dates1], BasinObs$DVmm[dates1], na.rm = 
TRUE))
plot(BasinObs$Date[dates1], BasinObs$Qmm[dates1],
     type = "l", ylim = (ylim*c(1.2, 1.2))-c(1.2, 1.2), 
     main = paste("Observed discharges and volume variation \n in 
reservoir of basin", basin_name, "\n(1994 - 1996)"),
     ylab = "Q [mm/day]", xlab = "Time [years]")
par(new = TRUE)
plot(BasinObs$Date[dates1], BasinObs$DVmm[dates1],
     type = "l", col = "blue", ylim = ylim*c(0.2, 0.2), xaxt = "n", 
yaxt = "n", ylab = "", xlab = "")
axis(side = 4, col.axis = "blue")
mtext(paste("Delta_V [mm/day]"), side = 4, line = 3, col = "blue")
legend("topright", legend = c("Qobs", "Delta_V"), 
       col = c("black", "blue"), lty = c(1, 1), lwd = c(2, 2), cex = 
0.8)

##### PLOT period 2 ######
par(oma = c(7,1,7,3), xpd=TRUE)
ylim = c(min(BasinObs$Qmm[dates2], BasinObs$DVmm[dates2], na.rm = 
TRUE)-2.5, 
         max(BasinObs$Qmm[dates2], BasinObs$DVmm[dates2], na.rm = 
TRUE))



plot(BasinObs$Date[dates2], BasinObs$Qmm[dates2],
     type = "l", ylim = (ylim*c(1.2, 1.2)),
     ylab = "Q [mm/day]", xlab = "Time [years]")
mtext(paste("Observed discharges and volume variation \n in reservoir 
of basin", basin_name, "\n(1997 - 1998)"),
      side = 3, line = 1, font = 2, cex = 0.9)
par(new = TRUE)
plot(BasinObs$Date[dates2], BasinObs$DVmm[dates2],
     type = "l", col = "blue", ylim = ylim*c(0.2, 0.2), xaxt = "n", 
yaxt = "n", ylab = "", xlab = "")
axis(side = 4, col.axis = "blue")
mtext(paste("Delta_V [mm/day]"), side = 4, line = 3, col = "blue")
legend("top", legend = c("Qobs", "Delta_V"), 
       col = c("black", "blue"), lty = c(1, 1), lwd = c(2, 2), cex = 
0.7)

##### PLOT period 2 ZOOM ######
par(oma = c(7,1,7,3), xpd=TRUE)
dates2_zoom <- seq(which(format(BasinObs$Date, format = "%Y-%m-
%d")=="1998-09-01"),
              which(format(BasinObs$Date, format = "%Y-%m-%d")=="1998-
11-30"))
ylim = c(min(BasinObs$Qmm[dates2_zoom], BasinObs$DVmm[dates2_zoom], 
na.rm = TRUE)-2.5, 
         max(BasinObs$Qmm[dates2_zoom], BasinObs$DVmm[dates2_zoom], 
na.rm = TRUE))
plot(BasinObs$Date[dates2_zoom], BasinObs$Qmm[dates2_zoom],
     type = "l", ylim = (ylim*c(1.2, 1.2)), 
     ylab = "Q [mm/day]", xlab = "Time [years]")
mtext(paste("Observed discharges and volume variation \n in reservoir 
of basin", basin_name, "\n(1998)"),
      side = 3, line = 1, font = 2, cex = 0.9)
par(new = TRUE)
plot(BasinObs$Date[dates2_zoom], BasinObs$DVmm[dates2_zoom],
     type = "l", col = "blue", ylim = ylim*c(0.2, 0.2), xaxt = "n", 
yaxt = "n", ylab = "", xlab = "")
axis(side = 4, col.axis = "blue")
mtext(paste("Delta_V [mm/day]"), side = 4, line = 3, col = "blue")
legend("topleft", legend = c("Qobs", "Delta_V"), 
       col = c("black", "blue"), lty = c(1, 1), lwd = c(2, 2), cex = 
0.8)

##### PLOT period 3 ######
par(oma = c(1,1,1,3), xpd=TRUE)
ylim = c(min(BasinObs$Qmm[dates3], BasinObs$DVmm[dates3], na.rm = 
TRUE)-2.5, 
         max(BasinObs$Qmm[dates3], BasinObs$DVmm[dates3], na.rm = 
TRUE))
plot(BasinObs$Date[dates3], BasinObs$Qmm[dates3],
     type = "l", ylim = (ylim*c(1.2, 1.2))-c(1.2, 1.2), 
     main = paste("Observed discharges and volume variation \n in 
reservoir of basin", basin_name, "\n(1999 - 2000)"),
     ylab = "Q [mm/day]", xlab = "Time [years]")
par(new = TRUE)
plot(BasinObs$Date[dates3], BasinObs$DVmm[dates3],



     type = "l", col = "blue", ylim = ylim*c(0.2, 0.2), xaxt = "n", 
yaxt = "n", ylab = "", xlab = "")
axis(side = 4, col.axis = "blue")
mtext(paste("Delta_V [mm/day]"), side = 4, line = 3, col = "blue")
legend("topright", legend = c("Qobs", "Delta_V"), 
       col = c("black", "blue"), lty = c(1, 1), lwd = c(2, 2), cex = 
0.8)

##### PLOT V_interann and Q_obs interann ######
par(oma = c(0,2,0,2), xpd=TRUE)
w1 <- matrix(c(1,2), ncol = 1)
layout(w1, widths = 7, heights = c(5, 4), respect = TRUE)
# par(mfrow = c(2, 1))
plot(DVmm_interannuel, 
     type = "n", col = "blue", xaxt = "n", yaxt = "n", xlab = "", ylab 
= "",
     main = paste(c("Interannual variation of volume \n in the 
reservoir")))
segments(-15,0,length(DVmm_interannuel)+15,0, col = "grey")
par(new = TRUE)
plot(DVmm_interannuel, 
     type = "l", col = "blue", xaxt = "n", yaxt = "n", xlab = "", ylab 
= "")
mtext(paste("Delta_V \n [mm/day]"), side = 2, line = 3, col = "black")
axis(1, labels = c(month.abb), at = (0:11)*30)
axis(2, labels = c(min(DVmm_interannuel),"0", 
round(max(DVmm_interannuel), digits = 2)), 
     at = c(min(DVmm_interannuel), 0, max(DVmm_interannuel)))
ylim = c(min(Vmm_interannuel,
             Qobs_interannuel, na.rm = TRUE), 
         max(Vmm_interannuel, 
             Qobs_interannuel, na.rm = TRUE))
plot(Vmm_interannuel, 
     type = "l", ylim = ylim, col = "red", xaxt = "n", xlab ="", 
     ylab = "", main = paste(c("Interannual observed discharge and 
volume \n in the reservoir")))
mtext(paste("V and Qobs \n [mm/day]"), side = 2, line = 3, col = 
"black")
axis(1, labels = c(month.abb), at = (0:11)*30)
par(new = TRUE)
plot(Qobs_interannuel,
     type = "l", col = "black", ylim = ylim, xaxt = "n", yaxt = "n", 
xlab = "", ylab = "")
legend("topright", legend = c("V_interann", "Qobs_interann"), 
       col = c("red", "black"), lty = c(1, 1), lwd = c(2, 2), cex = 
0.6)

##### PLOT V_interann and Q_obs interann ######
par(mfrow = c(2, 1))
plot(P_interannuel, type = "l",
     col = "navy", xaxt = "n", xlab = "", ylab = "P [mm/day]",
     main = "Interannual rainfall")
axis(1, labels = c(month.abb), at = (1:12)*30)
plot(E_interannuel, 
     type = "l", col = "navy", xaxt = "n", xlab = "", ylab = "EP 



[mm/day]",
     main = "Interannual evapotranspiration")
axis(1, labels = c(month.abb), at = (1:12)*30)
dev.off()
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