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Abstract:

This study analysis the sensitivity of the perfonee of the lumped flood forecasting GR3P
model to the time resolution (i.e. the use of ddfe short and large model’s time steps) to
reach different lead times. In this study, we tagtmodel against a large set of watersheds to
warrant the development and the evaluation of mbig, robust and general procedure.
Depending on the reaction times of the catchmémsselected lead times range from 2 to 72
h. The time steps go from 1 to 24 h. The modelptsnuzed for each time step (but it keeps
the very same structure). We estimate the effigiesicthe GR3P model working on the
different time steps to reach the given lead timath the persistence criterion and the
persistence criterion on logarithms of dischargdeW assessing the performances on high
flows, the best performance is obtained when thdet® time step equal to the assessment
time step. Even using a null future precipitaticersario with a focus on high flows, it is still
useful to choose a high time resolution model (nedel working on shortest time step) in
order to get the most accurate forecast. Thus gerational forecasters, it is valuable to run
the model GR3P at the hourly time step.

Résumé:

Ce stage porte sur une étude de sensibilité du lmgttgbal de prévision des crues GR3P a la
résolution temporelle (i.e. 'emploi d’'un petit pds temps ou d’un pas de temps plus grand)
pour atteindre différents horizons de prévisionsudltestons dans cette étude notre modele
sur un large échantillon de bassins versants pssurer le développement et I'évaluation
d'une procédure robuste, fiable et générale. Ledsztmas de prévisions sont choisis en
fonction de notre échantillon de bassins versant®m,t de 2 a 72 heures. Nous choisissons
donc des pas de temps entre 1 et 24 heures. Ldarextéoptimisé pour chaque pas de temps
(tout en conservant la méme structure). Les pedanas du modéle GR3P fonctionnant aux
divers pas de temps pour atteindre les différentizbns sont évaluées a 'aide des critéres de
persistance sur les débits et sur les logarithreesdébits. Quand on évalue les modeles sur
les hautes eaux, le modele fonctionnant au pasrdps €gal au pas de temps utilisé pour le
calcul du critere de performance présente des ipeafaces significativement meilleures que
les autres modeles. Ceci est également vrai lmmsgmploie un scénario de pluies futures
parfaitement connues ou un scénario de pluies datumnulles. Aussi, en conditions
opérationnelles, il est préferable de choisir ledgle fonctionnant a une haute résolution
temporelle (le modéle avec le pas de temps le q@ust) pour fournir les prévisions les plus

précises.
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Chapter 1
INTRODUCTION

Due to the increasing vulnerability of our socisti®® floods and the need for better
management of water resources, the demand foiiegffistreamflow forecasting methods is
constantly increasing. Rainfall-Runoff modelling & tool commonly used for flood

forecasting. Much research is still being driveiintprove the forecast. In fact, different types
of floods (flash floods, slow and rapid-onset fleaetc.) can occur. The lead time for which
we can issue an acceptable forecast will depentietype of flood. Therefore the modellers
should consider very different lead times froma feurs to several days. This is why we are
designing and assessing forecasting model on @®@ution basis (i.e. different time steps)

to reach different lead times.

1.1  Objective of study

Our main objective is to estimate the efficiencyled GR3P model (flood forecasting model)
working at different time steps to reach differemven lead times. In the operational
application, this study will be helpful for the &masters to choose the appropriate model’s

time step to reach the desired lead time.

For better understanding of our study, a short rjesen of rainfall-runoff modelling, its
importance, classification of rainfall-runoff modgltheir operational applications and

different methods of flow forecasting, are presdnéter in this chapter.

1.2  Rainfall-runoff modelling and its importance

Rainfall-Runoff models are tools used for hydrotadiinvestigations in engineering and
environmental science (Wagener, €t, al. 2004). The main objective of this modelling
domain is to simulate the catchment response tdalkin terms of streamflow. Various types

of hydrological models are now developed by reseasc

1.2.1 Lumped vs. Distributed Models

Models can be classified depending on their spdgatription of the catchment: they can be

specified as lumped and distributed models (or s#stiibuted models).



Lumped modeldo not explicitly take into account the spatiatiahility of inputs, outputs, or
parameters but they consider the whole catchmeatsagyle unit. They are usually structured
to utilize average values of the watershed chanatitss affecting runoff volume (e.g. the
GR3P model used in this study).

Distributed modelsinclude spatial variation in inputs, internal \edoies, outputs, and
parameters. In general, the watershed area isedivicto a humber of elements and runoff
volumes are first calculated separately for eadmeht (e.g. some implementations of
TOPMODEL are distributed).

1.2.2 Classification of model structures

There are a large number of various model strustaieveloped so far. Therefore, it is
necessary to classify these structures, and onenoaoly applied classification uses three
distinct classes (Wagener, T., Wheater, H.S. anut&id.V. 2004).

a) Metric (data-basedmpirical or black-box) model structures,

b) Parametric§onceptualor grey box) model structures,

c) Mechanistic physically basedor white box) model structures.

a) Metric Model Structures (empirical)

These model structures commonly use the availabvle-series to derive both the model
structure and the corresponding parameter valussy &re purely based on the information
obtained from the data (hence also called dateedrimodels) and any prior knowledge about
catchment behaviour and flow processes. e.g. AdlfiNeural Networks (ANN), Nearest
Neighbours Method (NNM) and Transfer Functions (B¢ empirical. Metric models are
usually spatially lumped, i.e. they treat the cateht as a single unit.

b) Parametric Model Structures (conceptual)

In contrast to metric models, the structure isrtefiaccording to the concepts of the modeller
about hydrological system (e.g. water balance, emasion of mass and the available data
and processes that the modeller considers as dotimahe catchment), and hence such
models are also commonly termed conceptual. Howthee models still depend on time-
series of system output, mainly streamflow, to et values of their parameters in a

calibration procedure. The main part of these noaeh storage element. These storages are
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filled by rainfall, infiltration or percolation, @& emptied by evapotranspiration, runoff,
drainage etc. The parameters define the size ddttrage elements or the distribution of flow
between them. Most of these models are lumped. Menyvéhere is one common approach to

divide the catchment into smaller sub-catchmehtssb calledemi-distributedapproach.

¢) Mechanistic Model Structures (physically based)

The basics of these models are the principles g§ips (conservation of mass, momentum
and energy). These became practically applicablkarL980s, as a result of improvements in
computer power. The expectation was that the extérmghysical realism to which these
models are based would be sufficient to relater tiparameters, such as soil moisture
characteristics and unsaturated zone hydraulic wdvity functions for subsurface flow or
friction coefficients for surface flow, to the nedor model calibration. However, these
models faced the problems of extreme data demarmle gelated problems and over-
parameterization. One consequence is that the npatameters cannot be derived through
measurements; mechanistic model structures therefill require calibration, usually of a
few key parameters, though applied to a large nurmbelements. The expectation that these
models could be applied to ungauged catchmentgheasfore not been fulfilled. They are
typically rather applied in a way that is similarlumped conceptual models. These models
use normally the smaller distributed units basedgods, hill slopes or some type of

hydrologic response unit.

1.3  Operational application of rainfall-runoff modelling

Flood forecasting is a very important part of watesources management activities which
relate to flood warning, flood control or reservoperation. To the researchers working on
hydro systems and water resources managers, apeatapplications such as flood

forecasting is still an important existing demaretdwuse: i) this is a real time operational
application, ii) this is a stressful situation anflhydrologists have no time for data quality

control. This is why operational users ask for iband easy to use tools. Garrote & Bras
(1995) stated that flood forecasting is to be ad@r®d as one of the unsolved problems of

operational hydrology.

It is also known that flow forecasting is differelnom flow simulation in a hydrological

context.

11



1.4

Flow simulation consists in running a hydrological model using @sut variables
only the past sequence of rainfall (and other ispwuch as potential
evapotranspiration) until the current time stegstmate the flow value at the current
time step. Observed flows are not used in the gitionl process (they are only used in
the prior phase of model calibration and evaluation
Flow simulation is used:

» To assess our understanding of Rainfall-Runoff @sec

» To estimate the missing information of streamflovailong time series data.

» To estimate the heavy floods occurred, if we ordyena long data time series

of rainfall.

Flow forecasting consists in running a hydrological model to caltultuture flow
values over the forecast period using the sametsngal previously and a scenario of
future rainfall up to the forecast lead time. Indiidn to these inputs, the past
sequence of measured flows is also used up tantleevthen the forecast is issued.

Methods being used for flow forecasting

A lot of methods have been proposed to overconsedperational hydrological problem. Up

to now the simulation models were being used witlugdating procedure to forecast the flow

and it is a common thinking that any type of sintiola model with an independently chosen

updating procedure can be used for forecasting gdi@an M., 2008). A research held at
CEMAGREF has described that by choosing a simulatimdel with an updating scheme

independently cannot ensure the efficiency of faséiag so there should be some specific

characteristics to combine the simulation modet$ @pdating procedures. This issue led the

researchers of CEMAGREF to develop a model, GR3R¢hwis specifically a forecasting

model with a built-in updating technique. This stusito be achieved by using GR3P.

This report is organized as follows: chapter 2 mles a short background of the study.

Chapter 3 describes the development of model usddlis study, the methodology adopted

for forecasting and for the estimation of perfore@nChapter 4 presents the results and

provides a discussion on the relative performamdedifferent model’s time steps used to

reach a given lead time.
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Chapter 2
REVIEW OF LITERATURE

2.1 Forecasting models with different updating techiques

Many approaches have been proposed in order te fesacasts with different hydrological
models. To improve the performance of these modifferent updating techniques are used
in combination with different lumped or distributedinfall-runoff models. Updating is a
procedure to improve the efficiency of forecastingpdel by continuously comparing
simulations to observations at the time of fore@ast by changing values of some variables
or parameters to reduce the differences ¥ang, X. and Michel, C. (200troduced a
parameter updating procedure that can be combinétdoenceptual rainfall-runoff models
for flood forecasting purposeRefsgaard, J. C. (199 Proposed a classification of updating
procedures used for forecasting depending on thdifitation of variables during the
feedback process:

1) Updating of input variables (precipitation, air {g@nature).

2) Updating of state variables (snowpack’s water egjeivt and water contents of

reservoir).
3) Updating of model parameters (runoff coefficiend daydrograph).

4) Updating of output variables (observed stream flow)

Updating techniques can be used in two differentswkirst, they can be used in combination
with a simulation model which is calibrated sepalsatind secondly, it can be used as a built-
in technique of the model to use the last obseflosds as an actual model inpdtangara, M.

et al. (2008have compared the performance of a model, GR3Rhwtas a built-in updating
technique with a combination of a simulation modetl an updating technique. Updating
technique in second case was the same as useeé byotel GR3P. The results of this study
have shown that the GR3P model with a built-in tgipdatechnique is a more simple and
efficient model.Toth, E. and Brath, A. (200Have shown that the forecasting ability of a
conceptual rainfall-runoff model in combination ian output updating technique is better
than a neural network model when focusing on tlegliption of flood events and especially in

case of a limited availability of calibration data
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2.2 Use of forecasting models on time resolution bia

Time resolution is also an important factor in foldgical modelling. The idea of studying a
model on the basis of time resolution i.e. differgmort and large time steps and lead times is
not widely studied. We found few articles which bagtescribed the importance of time
resolution in hydrological modelling in compariseiith the number of articles dealing with
the question of spatial resolutiomdughes, D. A. (1993{iscussed the advantages of
incorporating variable length time steps into deiarstic hydrological models and has
presented a method based on the use of rainfalhsittes to determine appropriate length
time steps automatically. It differs from other eggches that have been reported (e.g. by
Dunsmore et al., 1986), in that the same modeltiome are used regardless of the time
interval. The performance of a model can be diffel@n different lead timeslangara, M.
(2005)have reported that GR3P model proves to be anezftitorecasting tool for short lead
times. Toth, E. and Brath, A. (2008howed that the forecasting ability of neural netwo
models is proved to be excellent over all lead simvben simulating over continuous periods,
provided that an extensive set of both stream feowl precipitation data is available for
calibration purposes. The above references shotvthigatime resolution has a significant

effect on the hydrological model performance.
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Chapter 3
METHODOLOGY

Here we introduce the main elements of our approdich used model first, then its
calibration and validation, the criteria of perf@ante and the data we use. We finish with the
proposed method to estimate the efficiency of tRSE model working at different time steps

to reach different given lead times.

3.1 Description of the Model GR3P

The GR3P Flood forecasting model used in this stoelpngs to a combination of metric
(empirical) and parametric (conceptual) approadheshybrid metric-conceptual models
GR3P model is lumped and has only three free paemécommonly called parameters) to
calibrate:

1) X1: Maximum capacity of the quadratic routing stdex¢l noted R, in mm)

2) X2: Adjustment coefficient of effective rainfall

3) X3 Base width of the unit hydrograph (UH)

There are also four fixed parameters in the GR3Beahdl) the maximum capacity of soil
moisture accounting store, (2) the exponent of umjitlrograph, (3) the coefficient of
percolation function and (4) the exponent of fioatrection. Fixed parameters differ from
free parameters, in that their values do not chédmge one catchment to another whereas the
values of free parameters of a model change froencatchment to another.

The model can be understood as the union of twts:parproduction function and a routing
function. Production function defines the amountvater to be delivered as discharge at the
outlet in the next time steps while routing funatidistributes/allocates this amount of water
to each of the next time steps.

A complete structure of the model GR3P and the mayhich it operates is shown in figure
3.1

Production function

In the functioning of the GR3P model, first comle production function. Net precipitation

and net potential evapotranspiration are calculaisthg the precipitation and potential

15



evapotranspiration at the current time step t, thedwater content of the production store is
updated.

E P
Interception
En Pn
E P, Pn-P. )
s s nes Production
function
A
A
S
A 4
I
Perc
Updating by the 7'y
current observed—> R S
flow
\ 4
Routing
A function
Out flow Q

Exploiting the
previous error m—>, Partial correction
4

AN

Q

O>>

Figure 3.1: General scheme/structure of the flonedasting model GR3P and order in which
operations are made in the model (meanings of matations are given in the appendix A).
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A part of net precipitation directly goes to theuting function as direct flow while the
remaining fills the production store. The leveltbis store defines how much water goes to
the routing function.

A part of the stored water percolates and joinsrthaing system/function. The amount of
water contents percolated from the store is mdashahuch smaller than the direct flow when
there is some precipitation. Water entering thadfexr function is then multiplied byiXthe
adjustment coefficient that plays the role of wdialance adjustment for short time scale in
the production module.

Routing function

The flux which leaves the production function ignhtransformed by the routing procedure,
which acts in two steps.
a) First, there comes a unit hydrograph. The disaedinates UH (k) of the unit hydrograph
are calculated by the difference of the succesgalees of the cumulative hydrograph (S-
curve) as follows: UH (k) = CUH (k) — CUH (k-1)

Ifk < 0then CUH (k) =0

If 0<k<X3then CUH (k) =K/ [k"+(X3-K) “]

If k=X3 then CUH (k) =1
where X is a parameter (in hours) to be calibrated ant the exponent of the unit
hydrograph. Figure 3.2 shows cumulative unit hydapf and discrete unit hydrograph.

Cumulative unit hydrograph Unit Hydrograph

101 o 0.10

0.8 1 /z 0.08 AT

o
o
1
.
e
1
=

006 - % X‘

o
~

1
I

Components of the CUH
.
Components of the UH

: \

0.2 0.02 1

0.0 0.00

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Time steps (hrs) Time steps (hrs)

Figure 3.2: Cumulative unit hydrograph (CUH) anslcdete unit hydrograph (UH) for
X3 =30 hrs. 17



b) Then comes a quadratic routing store (capa€i¥,on mm). The water content of the
routing store at the end of the current time stigpirectly calculated using the observed

flow.

How does the model use the last observed flow fopdate?

The model has two updating techniques.
a) The water level in the store at the end of curtiene step ‘t’ is given by
A QT +HAXQ -Q
tt 2
Where the subscripta” indicates the update (i.e. use of the currenteokd flow), see

Eq. A

appendix A for notations. The observed dischargasQherefore an actual input of the

updating procedure. The explanation of equation given in Appendix B.
A A
b) Eventually forecast ﬂOWQm\t to Q. are obtained by applying the forecast error made

A
A
at the previous time steQ ,_, (i.e. forecast made at time step t-1 for time djeporecast

flow at time step t+i (i between 1 and L) is givan
B

A

A A Q
Qt+|\t :Qt+|\t' VA
Qt\t—l

3.2 Criteria

Many different criteria are used to calibrate aralidate the models. Some criteria for

validation of the model are given here.

3.2.1 Which criterion to use?

a) Nash-Sutcliffe criterion
This model efficiency coefficient is often usedassess the prediction efficiency of

the hydrological models (Nash and Sutcliffe, 190} given by the formula:

N 0 )
Z(Qtﬂ _Qt+|\t)
E =10001- 2

>Qu -Q)?
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This criterion is a comparison of the mean squarar @nd of the variance of streamflows. It
can also be understood as a comparison of our nbio@ehaive model which, in this case, is
the mean flow over the test period. It is a clagsas it is widely used for the simulation of
stream flow.

These efficiencies have a value ranging fromto 1. The closer the model efficiency to 1,

the more accurate the model is.

b) Persistence criterion

It is computed by the following formula:

N 0 )
Z(Qtﬂ _Qt+|\t)
Pers=100011--=

Z (Qt+| - Qt )2

The persistence index is a criterion similar to Nesh and Sutcliffecriterion but its naive
model is better adapted to forecasting. This a¢dtecompares the error of the tested model to
the error of a naive model that assumes the flitwesast streamflow values same as the last
observed streamflow values.

Nash and Sutclifferiterion is very coarse in a forecasting coniestause it uses the mean
observed flow which may be too big or too smallntten the forecast period and which

therefore yields high (and often misleading) eéfiay values.

Compls a transformation of persistence criterigiven by the following formula:

C,w = ;82 X Fl;ers , Where Pers is the persistence criterion. g has been
- Pers

proposed by Mathevet (2005).

If Comp has a positive value, i.e. between 0 and 100 thertested model is better than the
naive model. Conversely if the value o\ is negative i.e. between 0 and -100, then the
performance of the naive model is better than #stetd model. Limits of values for the
persistence as well as fopgépare shown in the figure 3.3.

-00 0 +100

Pers
Comp

-100 0 +100
Figure 3.3: Limit values for persistence criteraomd Gyp.
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We prefer using &up because ihas a limited lower value also in the case wherenaiodel

is better than the tested model i.e. -1, whichhia tase of persistence criterion is unlimited
i.e. «<o. We can say thatfipis a more significant way to present the critenafues because
it has limited values for both the best and worstfgrmance of the model when we are

interested in the average performance of large murmmbwatersheds.

3.2.2 Howto usethiscriterion over alarge sample of watersheds?

To compare different versions of the model, we ys®the distribution of criterion values for
the different versions. The best version is chdsgm®examining, first the median values (or

averages) and then the whole distribution (espgdia¢ tails) of the parameter values.

3.3 Calibration and validation
3.3.1 Calibration

The quality of any calibration process is very mdependent on the quantity and quality of
the time-series data (data of precipitation, evapspiration etc.) used. The necessary
quantity of data depends on the amount of inforomatn it (with respect to identifying the
model parameters) i.e. the number of events (sforatker than length of data series. The
guality of the data relates to the errors whichpesent in the information.

The quantity of data required for calibration degeon the number of parameters of model
structures to be estimated and on the quality dadacteristics of the data. Franchini and
Pacciani (1991) found that the required lengthhef ¢alibration data was directly related to
the number of parameters to be optimiz@&§agener, T., Wheater, H.S. and Gupta, H.V.,
2004).

3.3.2 Procedure of calibration-validation (split-sanple test)

The available stream flow record should be splid two segments one of which should be
used for calibration and the other for validatidhavailable stream flow record is long
enough that one half of it may suffice for calilwat it should be split into two equal parts,
each of them should be used in turn for calibratiod validation, and the results from both
arrangements should be compared. The model shaujddged acceptable only if the two
results are similar and the error in both validagiouns acceptabl®’ (Klemes, 1986)

A single calibration is not sufficient to test thedel because it is only the estimation of the

best combination of parametric values: validatioeraanother period is also needed. A large
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number of parameters increase the model performaweethe calibration period because the
number of degrees of freedom also increases ancinyaelds a better fit of observed data.
But in validation process, this trend may disappsad a model with a limited number of
parameters may achieve the results as well as tduels)with large number of parameters
(Perrin C., 2001). If we increase the number ofapeters beyond a certain limit then

performance of model starts decreasing in validatiois is due to over calibration.

34 Catchments data base
3.4.1 178 catchments

A data base of more than one thousand catchmenli§f@fent regions (area ranging between
10 to 8900 krf) under different climatical conditions is availabdnd 178 catchments are
selected on the basis of similarity in the climatanditions and behaviour of the catchments
by using their discharge auto correlation. Areatf@se 178 catchments varies between 10
and 5940 krh Principal components analysis (PCA) was used teithstatistical indices of

precipitation and streamflow (Table 3.1) describiing diversity of catchments.

Indices Unit
Mean Annual Stream flow mm
Seasonal streamflow variation %
Low flows dL.s".km?
Modular low flow %
2-year flood L.g.km*
Base flow index %
Mean annual precipitation mm
Seasonal precipitation %
Rainfall of return-period 2 years mm
Annual fraction of no-rainfall day§ %

Table 3.1: Statistical indexes of precipitation atreéamflow.

Why do we use so many catchments (178)?

In this study, we chose to test our model againkirge set of watersheds encompassing
widely different regions. Indeed we believe thalyom large data base can warrant the
development and the evaluation of a reliable, rolaunnsl general procedure (Tangara, M.,
2005).
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Why do not we use all of the available catchments?

We are going to estimate the efficiency of modekbart time steps and if we will take into
account all of the available catchments then tloegss for estimation of model performance
will take a long time.

Sample watersheds (with their outlets) in Franeeslwown in the figure 3.4. The small grey
points show all catchments (more than 1000) wheredssquared blocks show the 178
catchments chosen for our study.

@ All 1040 available catchments
B Selected 178 catchments
Figure 3.4: Map showing the catchments in France.

3.4.2 Data available for each catchment

In the data base we have data of precipitatiorgri@l evapotranspiration and discharge at
the hourly time step for the years 1995-2005. T@snee the mean areal precipitation, the
rainfall data was obtained from a network over 6@ih gauges in France. The areal
precipitation is then assessed by using the Thiegs@lygon method. The potential

evapotranspiration was estimated by the methodgsexp by L. Oudin (2005). Discharge is
evaluated through a rating curve.

In the case of model GR3P we used observed raiadadicenario of future rainfall to test the
flow forecasting approaches. This choice consstida optimistic scenario but it benefits
equally to the compared procedures and has thuspact on their ranking, and thus on our

conclusiongTangara, M., 2008).
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3.5 Method of our study

Step 1

In the first step we chose different lead times ame steps (to reach these lead times). The
response time of the catchment from our sampleesdretween a few hours to few days so
consequently the lead times chosen go from 2 h,63h12 h, 18 h, 24 h, 36 h, 48 h and 72 h.
Then the time steps chosen to run the model are21hh3 h, 6 h, 12 h, and 24 h. A complete

procedure to understand the functioning of our rhadghown in the figure 3.8.

Step 2

In the next step we aggregate the available halatg in the form of time steps 2 h, 3 h, 6 h,

12 h and 24 h for each catchment. An example ofeg@ggion of discharge data is shown in

the figure 3.5.
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Figure 3.5: Aggregation of the available hourlyctligrge data over

time steps of 12 h.
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Step 3

Then we optimize the model for each time step (negpect to the model structure - identical
for all time steps): we estimate the best valuesawh of the fixed parameters of the model
running at each of the mentioned time steps (AppeGil

To estimate their best values we try different ealuof parameters and estimate the
performance of the model at these values of paemnethe values with best performance at
each time step to reach given lead times are chdserexample of the graphs plotted for
different values of each of the parameter at titep 6 h are given in the figure 3.6.

MMaximum capacity of soil moisture accounting store Exponent of unit hydrograph
Time step: 6 h Time step: 6 h
Lead time: 6 h Lead time: 6 h
50 | s0
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= =
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T T T T T T T T T
250. 275 300. 323 350. 1.50 1.75 2.00 23

Values of parameter Values of parameter
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Lead time: 6 h

Exponent of final correction
Time step: 6 h
Lead time: 6 h
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Fiiies L
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Values of parameter Values of parameter

Figure 3.6: Example of graphs plotted between wBfievalues of fixed parameters and
performance criterion.

Step 4

Finally we estimate the efficiency of the GR3P magderking on different time steps to reach

given lead times. The criterion used to assespénwrmance of our method Gyp (i.€. the
transformation of thpersistence criterion).

24



We want to assess first, punctual forecast (e.@twiould the discharge be at 6 h as shown in
the figure 3.8) and then also we want to make &rrfbrecasts so we use different assessment
time steps. If we want to assess the performaneenoddel working with a small time step on

a larger assessment time step, we aggregate uksteSonversely if we want to assess the
performance of a model working with a large timepsbn a smaller assessment time step then
we disaggregate its results according to the redquassessment time step. The different
assessment time steps used in this study are givable 3.2.

Model working at a time step uses the best valdidsx@d parameters for this time step. The
analysis is carried out for each lead time. We camagor a lead time, the performance of
models working at different time steps, assessdteatime step. An example dig graphs

showing the performance of each of model’s timpste given in the figure 3.7.
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Figure 3.7: Example of graphs plotted between #réopmance criterion and model
working at different time steps to reach a giveadléime.
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T |2 3 6 12 18 24 36 48 72
ATS | 1] 2| 1] 3] 1 1l 2] 3] 6 12 3 |6 6 f24 |1 |2 | 3] 6] 12] 1] 2] 3] 6] 14 24 1] 2 3 4§

MTS | 1 1 1 1|1 11 [1 |1 1|1 1|1 1 [1 [1 [1 [T |1 1 |1 [1 |1 1 |1 [1 [1

2 3 2 2|2 31210212 2|2 2 |2 2 |2 |3 |2 |2 |2 2 |2 |2 |2 3 |2 |2 |2

3 3|3 6 |3 [3 |3 3|3 3 |3 3 |6 |6 |3 |3 |3 3 |3 [3 |3 6 |3 |3 |3

6 6|6 |12|12|6 |6 |6 6|6 |12 |12|6 |6 6 |12 |12 |6 |6 |6 |12 |12 |6 |6 |6 |6 |12 |12 |6 |6 |6

12 12 | 12 12 |24 | 24| 12|12 |12 | 12 12 |12 |12 |24 |24 |12 |12 |12 |12 |24 |24 |12 |12 | 12

24 24| 24 | 24 24 24 |24 | 24 | 24 24 | 24 | 24

LT Lead times

ATS Assessment time steps
MTS Model's time steps assessed for each timeasiepgiven lead time.

Table 3.2: Model’s time steps values on differ@sgessment time steps to reach a given lead time.
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Hourly data
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28



Chapter 4
RESULTS AND DISCUSSION

4.1 First results

In our first experiment, we assess the efficientthe GR3P model working at different time
resolutions (i.e. the different time steps we dafinpreviously in chapter 3), by using
persistence criterion over the whole available tsages of our set of 178 catchments (i.e. on

the whole periods) to reach the different lead sinvee defined previously.

First results indicate that there is a group ofetisteps for which the model shows no
significant difference of performance for most wakeds of our sample. The group consists

of available model’'s time steps (TS) which are lowan or equal to the lead time and 12 h:
if we call Gg,(L) this group of time steps for lead time L, then
TS OGgys(L) = TS <minL19. Performance for model's time steps larger than ehes

groups of model’s time steps decreases. Exampléseofraphs showing comparison of the
performance are given in the figure 4.1.

Leadtime: 2 h Lea(ltlrr'ne: 6h
Assessment time step: 1 h Assessment time step: 6 h
0 o 63 o 61.62 o 6820 o Thiz o 60.16 o 68.55
oo 50 45.07 4718 47.83 13.96
40 40.39 s < 36.07 35.26
- ——po.07 - = 19.36 22.18 20.82 18.67
= =
§‘ 20 17.00 18.55 i_/'
= Z o
£ 0 ;9: o —20.15
5 26.89
& & o —3224 °
—20
o -—24.81 —50 -
—40
o —47.46 o —78.16
T T T T T T
01 02 o1 02 03 06
Model time step (h) Model time step (h)
Leadtime: 12 h .
Assessment time step: 6 h Leadtime: 24 h
T b: Assessment time step: 12 h
80
o 7468 o 7435 © 7498 _
o 71.13 o 8053 © 8214 4 7900 o 8049 o 79.66
o 64.35
60

o 67.68
51.37 51.19 51.73 50.35 60.93 61.07 61.56 61.51 5776
44.33 50
40 38.17 38.82 37.30 N 47.26 17.18 46.73 4624 < N
. 7.3 3 2 44.54 4
3 ——36.48 3347 T T T - — 43.99
< 33.53
20 22.39 22.54 22.00 21.24 21.95 27.90 27.82 27.66 26.62

£ [
= .
& = 278 i 23.35
8] &
b =
2 =
g s o4
&2 —20 — 5 e
2 7 © —26.82 25.28
o —3120 o —30.52 © 72896 . 4 o —3276 © —3096 @ “286 o —26.8
—40 -
—so0
—60 -
o —67.64 o —r1s1
T T T T T T T T T T T
01 02 03 06 12 01 02 03 06 12 24

Model time step (h) Model time step (h)

Figure 4.1: Examples of graphs showing the perfoceaaf different model’s time

steps to reach different lead times.
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However we observe some different behaviours oettteeme values of the performance (i.e.

minimum and maximum values) for different time stepithin the groupGg,,s(L ) The

situation becomes worst for the minimum values efgrmance when the model’s time step
equals to the given lead time.

The fact that a model shows better performance thaather for watersheds where
performances are bad for any model, indicates ttiatfirst model is more robust than the
second model. Here the models working at time step®r than the lead time are more

robust than the model working at a time step etputiie lead time.

These results are the same whatever the assessmeistep we use.

4.2 Can we see some differences for slow or fastdanents?

By using their discharge auto correlation we défarated slow responding catchments to fast
responding catchments. We have classified qualé@itithe watersheds into four classes i.e.
very peaky, peaky, smooth and very smooth, depgndpon the values of discharge auto-
correlation. If the value of auto-correlation isango O then it means that watershed reacts
very fast / peaky, if these values go near to lréaetion of watershed will tend to become

much slower / smooth.

4.2.1 Analysis of the performances of different maal's time steps on different

watershed samples

To reach the lead times of 2 h and 3 h, the modietis steps equal to the lead time performs
better for very slow reacting watersheds than a ehaging 1 h time step. For other
watersheds there is no significant difference offggenance between the models using

different time steps.

The results also indicate that there is a gr@p.s(L with) TS 0G;,{L) = TS <6h for lead

times greater than or equal to 3 h, whatever thssels of watersheds we consider: in most
cases, we can see no difference depending on canthmeaction. Examples of the

performances are shown in the graphs given in édu?.
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Figure 4.2: Examples of graphs showing the perfoicaaf different model’s time step

on different samples of watershe

4.3 How can we explain those first results?

Different hypotheses can be proposed to explairfimimesults.
1) There is no more information in the shortest tinep slata than in the larger time step data
because:

a) For a larger model time step we have almost as nmfohmation of stream flows as
in shorter model time steps for periods of littleriation of stream flows, i.e. most
periods.

b) The information in the smaller time step data islagge than in larger time step data
because there are a lot of errors in these dafed¢edly in precipitation data). In
larger time step data these errors compensateahehso the information in the data
for both shorter and larger time step are almosakq

2) The model is not adapted to work with very preadermation (shorter time step data).
3) Our criterion is not adapted to see those diffeesraf information in data at different time

steps.
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4.4  Experiments to test our hypotheses

We estimate the performance of different modelisetisteps by taking into account only the
periods of flow which are of high interest in tleisperiment.

» Only the high flows (when stream flow is higherrha certain proposed value)
because the highest errors are made on high flowlsadso because it is an
important operational demand.

» Only the large flow variation periods. Flow var@tis, most often are low and
errors are small on these periods. Significantreromly happen on large stream

flow variation time steps.

4.4.1 Analysis of the performance of model using differentime steps when taking into
account only the high flows

An experiment is done by taking into account folibzation and performance assessment

(validation) only the flows higher than quantil®8.of discharge valuesj,,(Q .)

The results differ from those of the previous expent. They indicate that to reach a lead
time of 2 h or 3 h, the model’'s time steps thateayeal to the lead times perform significantly

better. For lead times of 6 h, there is a gréag, (L With TS, U Ggyrs(L) = TS, <6h for

which the model shows no significant differencepefformance. To reach lead times greater
than or equal to 18 h, the model’'s time step etpuaksessment time step shows significantly
better performance. For lead time of 12 h the misd&he step equal to the assessment time
step gives slightly better performance.

Thus the way we assess the model’'s performanceshvalssessment time step?) influences
the choice of time step leading to the best perémees: when we consider only high flows,
the best performances are achieved with a timeesjapl to the time resolution used to assess

the performances in most cases. Examples of thtsese shown by the graphs in figure 4.3.
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Figure 4.3: Examples of graphs showing some ob#tter performing model’s time steps

to reach different lead times when taking into actdhe high flows.

4.4.1.1Does it depend on the reaction times of our catchmes?

We also analyse the performance by dividing thechoaents into different classes as

discussed in section 4.2. The results are almasiasi to the above results (i.e. results of

section 4.4.1) for lead times 2 h and 3 h at sleacting catchments and for the lead times

between 12 h and 24 h on mostly fast and very reetting catchmentsFor lead times

greater than 24 h, above results (i.e. model's tatep equal to the assessment time step
performs better than other model’s time steps}ra=on all classes of catchments.
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4.4.1.2 Analysis of the performance of model usingjfferent time steps when taking into

account the high flows on fast reacting catchments

Here we use another way to select fast reactinchoants. These are chosen by assessing
model performance for different lead times with tditferent scenarios of future rainfall (i.e.
perfect and null future precipitation) for all ti®40 catchments of our complete sample.

Example for one catchment is shown in figure 4.4.

Period 1
g
g ° S P ¢ ~*
% o
© 2
8
o 5 10 15 20
Lead time (h)
Period 2
s Perfect future
- recipitation scenario
g = ‘\ﬁ_,‘; _ - °® precip
g ST A Null futureprecipitation
g scenario
8
0 5 n 15 20
Lead time (h)

Figure 4.4: Example of graph showing the procetlnihoose the fast reacting

subsample of a catchmensis equal to 5 for this catchmen

When the lead time is much smaller than the readime of the catchment then the future
precipitation scenario is of little importance. @ersely when the lead time is much larger
than the reaction time of the catchment then theréuprecipitation scenario is of significant
importance and the performances obtained with tuferdnt scenarios are significantly

different.
Lead time (lg) corresponding to a difference of performance Etu& points between both
future precipitation scenarios is then assessecedch catchment. Catchments whosasL

lower than 2 h are considered as our fast catclsnent

An experiment is done by taking into account folibzation and performance calculation

(validation) the flows higher than quantile 0.98 diécharge valuesgy(Q ,)on these fast
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reacting catchments. The results are almost the s&nn the experiment of high flows on our

sample of 178 catchments.

The results indicate that to reach a lead time bf & 3 h, the model’s time steps that are

equal to the lead times perform significantly betle reach lead times greater than or equal

to 12 h, the model's time step equal to the asseisstime step shows significantly better

performance. Even for the 6 h lead time the modehe step equal to the assessment time

step gives slightly better performance than othedelis time steps. Examples of the results

are shown by the graphs in the figure 4.5.
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Figure 4.5: Examples of graphs showing some ob#tter performing model’s time steps

when taking into account the high flows on fastcte catchments.

4.4.2 Analysis of the performance of model using differentime steps when taking into

account only the large flow variation

In the case of large flow variation we considerydithe steps with flow variation higher than

quantile 0.98 of flow variationg,(AQ). We observe by the results that to reach a lead ti

of 2 h or 3 h, the performance of model using tstep equal to the lead time is better than

35



other model's time step. We observe a gré@p (L with TS, UGgs(L) = TS; <6h for

which the model shows no significant differencepefformance for most watersheds of our

sample. Thus we find similar results to the expentrealized over the whole periods of data.

4.4.3 Use of different performance criteria

Until now we used the persistence criterion. Thesigeence criterion puts a large emphasis on
the highest errors. Persistence on logarithms sifhdirge is more sensitive to smaller errors
present in the time series. Using the logarithroienf of the persistence criterion is another

significant estimation of model performance.

We now make an experiment to assess the perfornm@noer model using the logarithmic
form of the persistence criterion.

Results indicate that, to reach the lead times iidten or equal to 3 h, the model’s time steps
equal to the lead time (i.e. 2 h and 3 h respegbyveerforms better for very slow reacting
catchments. To reach the lead times between 6 (Rardthere is a grou,,,{L Of time
steps lower than or equal to 6 A OGg, (L) = TS <6h) which shows no significant
difference of performance but to reach lead time=atgr than or equal to 24 h, the group

Ggurs(L) consists of time steps lower than or equal to 1§ OGg,¢(L) = TS <12n).

Examples of graphs plotted for lead time 2 h amdaBe shown in the figure 4.6.
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Figure 4.6: Examples of graphs showing the beteiopming model’s time steps to

reach lead times of 2 h and 3 h on very slow regatiatershed.
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The results are almost similar to the experimenaife flow variation as described in section
4.4.2. Using a criterion which focuses less ondteads to the same conclusion, so our first

criterion may be considered to be adapted for tudys

45 Analysis of the performance of model using differen time steps when

precipitation scenario is taken as zero

We make also an experiment to compare the perfaresaof different model’'s time steps by
using the future precipitation scenario as zerdé/Mdle do this experiment because the
operational services people may have no forecastiofall so a perfect future precipitation

scenario is much too optimistic.

4.5.1 Analysis of the performance of model usingifterent time steps when taking into
account the whole periods of data with a nufuture precipitation scenario

We observe by the results that to reach a lead ¢ifri2h or 3 h, the performance of model
using time step equal to the lead time is bettan thther model’s time step. The results also
indicate that model’s time step of 6 h shows sigaiitly better performance than all other
model’s time steps to reach the lead times betwedénand 18 h and the performance of
model’s time step of 12 h is significantly betterréach the lead times between 24 h and 36 h.
To reach the lead times of 48 h and 72 h, the n®dehe step equal to 24 h shows
significantly better performance than all other mksltime steps. These results are the same

whatever the time steps used for assessment.

So we can say that to reach our lead times themetis. group of model’s time steps leading
to the same best performances and that a modelstiapeslightly lower than the lead time is

the best solution (in terms obG).

We also analyse the performance on different ckae$eatchments and we observe that the
results are almost similar to the above resules the performance of model using time step
equal to the lead time is significantly better treher model’s time step) for lead times 2 h
and 3 h on all catchments classes. The resultalsoesimilar to above results (i.e. results of
section 4.5.1) for the lead times greater thandhtall classes of catchments. Examples of
some of the results are shown by the graphs ifighee 4.7.

37



Leadtime: 3 h

Leadtime: 12 h
Assessment time step: 1 h

Assessment time step: 6 h
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Figure 4.7: Examples of graphs showing the beteiopming model’s time steps to reach
lead times of 3 h, 12 h, 24 h and 48 h.

4.5.2 Analysis of the performance of model using ffierent time steps when taking into

account the high flows with a null future precipitation scenario

An experiment is done by taking into account folibzation and performance calculation
(validation) the flows higher than quantile 0.98 ditcharge values with a null future

precipitation scenario. The results are almoststmae as in both of the earlier experiments of
high flows.

The results indicate that to reach a lead time af & 3 h, the model’s time steps that are
equal to the lead times perform significantly betie reach lead times greater than or equal
to 18 h, the model’s time step equal to the assesstime step shows significantly better

performance. There is a gro@,,;s(L with model’s time steps 3 h and 6 h for lead tinfe 6

and a group with model’'s time steps 6 h and 12rhdad time 12 h, for which the model
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shows no significant difference of performance. Thsults are almost similar on all the

classes of catchments.

Here also the way we assess the model's perforrsatwhich assessment time step?)
influences the choice of time step leading to thstiperformances. Examples of the results

are shown by the graphs in the figure 4.8.
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Figure 4.8: Examples of graphs showing some ob#tter performing model’s time

steps when taking into account the high flowsh null future precipitation scenar

4.6 Discussion

Our results show that there are two groups of temds with different behaviours of model’'s
time steps: 2 h and 3 h as the first group, lemedigreater than or equal to 6 h as the second
group. This can be linked with the fact that adbtatchments of our sample react in a very
few hours.

For the first group of lead times, the model’s tisteps equal to the lead times perform
significantly better in almost all of the experintemade to answer the questions raised by the
first results. The results differ from one expenté& another for the second group of lead
times but most often the model working at a timepséqual to the assessment time step
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performs significantly better than other models wlessessing the performances on high
flows.

4.6.1 Focusing on high flows or on large flow varteons?

When taking into account only the high flows, wesetve that to reach the lead times greater
than or equal to 12 h on all classes of catchmantsalso often for 6 h lead time on fast
reacting catchments, the model’s time steps equassessment time steps show significantly

better performance than others. This is not the edsen we consider large flow variation.
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Figure 4.9: Examples of graphs showing the sanpleseft) and a zoom (on right) of
discharge distribution (top) and the gradient gttarge distribution (bottom).

To explain such a difference we compare the upgils of discharge and discharge variation
distributions. Figure 4.9 shows an example of disgh and discharge variation distributions
for one catchment. In first graphs (on left) we édasomplete discharge and discharge
variation distributions while in the graphs (onhigwe have a zoom over quantiles 0.95 to
1.00. If we consider a subsample of dates with flagher than quantile 0.983,,(Q then
this subsample really differs from the complete gl@mlit is not the case for subsample
defined by flow variations higher than quantile®.9.,(AQ). This is true for a huge majority
of our catchments.

This can explain why our results for high flows diferent from the first experiment results
(with the whole periods) while the results of tlem& experiment with high flow variations

are analogous to the first experiment results.
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We learn from these experiments that on the highesass (i.e. events of major operational
interests), it is necessary to use a short time $te’e want the most accurate forecast at a
high time resolution (shorter assessment time step)

4.6.2 The best model’'s time step is the one used performance assessment

The fact that the best model's time step is mostrnothe assessment time step can be
explained by the loss of information in aggregateom disaggregation processes. When we
aggregate data, we may assume that we lose soorenatfon (in figure 3.8, for data from
time step 1 h to time step 6 h). But if the aggtegacomes after the model’'s run, it
aggregates the information with errors within thput and with errors made by the model (in
its output). It may lead to worse aggregated outpah if the aggregation could have been
done before the model’s run (in figure 3.8, aggtegaof output data from time step 2 h to
time step 6 h). When we disaggregate the modelgubuwe have no information on how to
make smaller resolution data from coarser resaiutiata. Thus we certainly introduce much
error in this process (in figure 3.8, disaggregatd output data from time step 24 h to time
step 6 h). This is why using a time step for thedel larger than the assessment time step

leads to worse results.

When focussing on the high flows (flows higher thgumantile 0.98 of discharge values:

0y5(Q) ), the shortest model’s time step gives signifigabetter performances for high time

resolution (for the shortest assessment time s$keg) other time steps for lead times greater
than or equal to 12 h on all the classes of catcsnand for lead time 6 h on fast reacting
catchments. It proves that our model is adaptexdotdx with precise information (shorter time

step data).

4.6.3 Criteria of performance

Persistence criterion and persistence criterioiogarithms of discharge values are used to
calculate the performances of different model'setisteps. We see the same results by using
two different criteria even if the second one iokn to be more sensitive to the smaller
errors than the persistence criterion. We learn tising a criterion which focuses less on
floods leads to the same conclusion, so our frigtr@on may be considered to be adapted for

our study.
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4.6.4 Operational learning from our study

We observe the similar results when focusing o liigws with a null future precipitation
scenario as some operational forecasters may havdot Even using a null future
precipitation scenario with a focus on high flovitsjs still useful to choose a high time
resolution model (i.e. model working on shortestdistep) in order to get the most accurate

forecast. Thus our conclusions are still of intefesoperational forecasters.
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Chapter 5
CONCLUSIONS

This study is an analysis of the performance obradasting model, GR3P, on the basis of
time resolution (i.e. when using different timepseto reach lead times varying from a few

hours to a few days. The analysis is achieved lamge sample of data of 178 catchments to
ensure the generality of our conclusions. Perfomearare also assessed through different

time resolutions.

When calculating the performances by the critebrpersistence on continuous basis (i.e.
over a whole period of data), it appears that wg mse any of model’s time steps within a
group, which shows no significant difference offpanances, to reach the larger lead times.
This group consists of available model's time stefisch are lower or equal than the lead
time and than 12 h. Theses results are valid fgrtgpe of catchment (fast or slow reacting
catchments). Some more experiments were designesttsome hypotheses to explain these
guestioning results. These experiments are made avifocus on high flows, large flow
variations, different precipitation scenarios aiftedent performance assessment criteria. The
results obtained by these experiments show that often the model working at a time step
equal to the assessment time step performs signtfic better than other models when
assessing the performances on high flows. Conséguessessing at hourly time step proves
that the shortest time step data e.g. hourly titep, has more precise information in it than a
larger time step data for high flow periods and thar model can benefit from this precise

information.

According to the findings of our study, the forgeas should use the high time resolution
(shortest assessment and model's time step) tee issuaccurate forecast. Even if the
forecasters work in difficult situation (no futupecipitation knowledge), the high time

resolution model is still better.

43



44



REFERENCES

Dunsmore, S. J., et al. 1986 “Antecedent soil niogstin design stormflow estimation.”
ACRU Rep. 23, Dept. Agric. Eng., Univ. of NataleRirmaritzburg, South Africa, 114 pp.

Garrote, L. and Bras, R.L., 1995. “A distributed debfor real-time flood forecasting using
digital elevation models.” Journal of Hydrolo@$7(1-4): 279-306.

Hughes, D. A. (1993). "Variable time intervals ieterministic hydrological models.” Journal

of Hydrology143(3-4): 217-232.

Kitanidis, P. K. and R. L. Bras (1980). "Real-tifogecasting with a conceptual hydrologic
model 2. Applications and results " Water ResouResearcti6(6): 1034-1044.

Klemes, V. (1986). "Operational testing of hydratay simulation models.” Hydrological
Sciences Journd&1(1): 13-24.

Nalbantis, I. (1995). "Use of multiple-time-stepfarmation in rainfall-runoff modelling.”
Journal of Hydrologyi65: 135-159.

Perrin, C.,et al. (2001). "Does a large number of parameters enharael performance?
Comparative assessment of common catchment maodetwsies on 429 catchments.” Journal

of Hydrology242(3-4): 275-301.

Refsgaard, J. C. (1997). "Validation and intercongma of different updating procedures for
real-time forecasting.” Nordic Hydrolo@8(2): 65-84.

Shamseldin, A. Y. and K. M. O'Connor (1996). "A rest neighbour linear perturbation
model for river flow forecasting." Journal of Hydingy 179(1-4): 353-375.

Tangara, M. (2005). Nouvelle méthode de prévisiercdie utilisant un modéle pluie-débit
global. Ecole doctorale: Sciences de la Vie et aeTérre, Laboratoire: Hydrologie et

Environnement. Paris, France, Ecole pratique detebatudes de Paris. Doctorate: 374.

45



Toth, E. and A. Brath (2007). "Multistep ahead atnflow forecasting: Role of calibration
data in conceptual and neural network modellingdt&/ Resources ReseartB(11).

Wagener, T.et al. (2004). Rainfall-Runoff modelling in gauged andyanged catchments.
London, Imperial college press. Book: 374.

Yang, X. and C. Michel (2000). "Flood forecastinghna watershed model: a new method of
parameter updating.” Hydrological Sciences Jou4b#dl): 537-546.

46



APPENDIX A

Some important notations used in this study

t Current time step at which the forecast is issued
I Lead time
N Total number of time steps

g, (X) Quantile x of X (x between 0 and 100%)

Py Net precipitation,

En Net potential evapotranspiration

Ps Part of precipitation going to the production store
Es Potential evapotranspiration from the productiarest
P Direct flow

Perc Part of the stored water contents which patesl|

R¢ Level of the water content in the routing store

Q Observed streamflow at time step t

X1 Maximum capacity of the quadratic routing storeélenoted R, in mm)
X Adjustment coefficient of effective rainfall
X3 Base width of the unit hydrograph (UH)
a Exponent of the unit hydrograph
Exponent of the final correction (last update)

A
Ryt Water level in the store at the end of time step t

O
Q Calculated or estimated streamflow

A

A

Q... Forecasted discharge at t+1 knowing dischargenatstep t

A

Q.. Estimation of the streamflow value at time stelpdéne at time step t,
Q  Mean observed streamflow
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APPENDIX B
Details of the routing reservoir updating phase

Equation A is obtained as follows. Let us assuna¢ th

- R, the store content prior to the draining process,

- Q, is the output of the routing store over the tstep, due to the draining process,

- I/it‘t , Is the resulting reservoir content at the entheftime step (see appendix A for
complete notations).
The chosen reservoir is such that the outpytjSQelated to the reservoir water content, R,
according to the following relationship:

- R
R +X,

Where X is the capacity of the routing store.

Q =f(R)

At the end of the present time step, updaReds: ﬁm = f‘l(Qt)—Qt (the exact value giving
the observed discharge minus this discharge)

_ (/\Rt\t"'Qt)2

n or equivalently:
Ryt +Q, + X,

Q

2 A 2 A A 2
Q +RyQ +X,Q =Q" +2Ryt Q, + Ryt
This can be simplified into:

A 2 A
Ryt"+ Q, Ryt — X,Q, =0

The root for this quadratic equation is:

|/:\3\ _ \/Qtz +4X1Qt _Qt
tt =

2
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APPENDIX C
Different values of fixed parameters tested on a sef time steps to choose best values of fixed panaters

Name of TS | Values of Parameters
parameter
Storage 1 (225 |250 |275 |300
2 250 | 275 |300 350
3 250 | 275 |300 350
6 250 | 275 300 | 325 | 350
12 250 | 275 | 300 |325 | 350
24 275 | 300 [ 325 |350 | 375
1 |1.00 [1.25 |1.50
Exponent |2 1.25 | 150 |1.75 | 2.00
of unit 3 1.25 | 1.50 | 1.75 | 2.00
hydrograph | 6 150 | 1.75 | 2.00 | 2.25
12 1.50 | 1.75 | 2.00 | 2.25
24 150 | 1.75| 2.00|2.25 | 2.50 | 2.75
1 450 | 4.755.00 | 5.25 | 5.50
Coefficient | 2 2.00 | 250 | 3.00] 3.50, 4.00 4.504.75|5.00 5.50
of 3 2.00 | 250 | 3.00|3.50 [4.00 | 4.50
percolation | 6 2.00 | 250 |3.00 {3.50 | 4.00 | 4.50
12 2.00 | 250 | 3.00 | 350 | 4.00
24 1150 | 2.00 | 2.50 |3.00 | 3.50
1 0.375| 0.40| 0.425| 0.450| 0.475| 0.50
Coefficient | 2 0.100 0.200 0.300| 0.325| 0.350| 0.375| 0.40| 0.425| 0.450| 0.475| 0.50
of final 3 0.100 0.200 0.300(| 0.325] 0.350| 0.375| 0.40 0.50
correction |6 0.100] 0.125| 0.150( 0.175| 0.200| 0.225| 0.25| 0.300 0.40 0.50
12 0.100| 0.125] 0.150(| 0.175| 0.200| 0.225| 0.25
24 | 0.075] 0.100| 0.125| 0.150/| 0.175]| 0.200

Red= best chosen value of fixed parameter

TS= Set of tested time steps
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